
MATLAB® Compiler SDK™

Java User's Guide

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ Java User's Guide
© COPYRIGHT 2006–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Overview
1

Product Overview . 1-2
How Does Java Package Deployment Work? 1-2
Limitations of Support . 1-2

Configure Your Java Environment . 1-3
Install the Required JDK . 1-3
Set JAVA_HOME . 1-4
Set the CLASSPATH . 1-4
Configure the Native Library Path Variables 1-5

Programming
2

MATLAB Compiler SDK and the JVM 2-2

Integrate a Java Package into an Application 2-3

About the MATLAB Compiler SDK Java API 2-8
What Are MATLAB Generated Java Packages and When

Should You Create Them? . 2-8
Understanding the MATLAB Compiler SDK Java API Data

Conversion Classes . 2-8
Automatic Conversion to MATLAB Types 2-10
Understanding Function Signatures Generated by the

MATLAB Compiler SDK Product 2-10
Adding Fields to Data Structures and Data Structure Arrays 2-11
Returning Data from MATLAB to Java 2-12

iii

Pass Arguments To and From Java 2-13
Format . 2-13
Manual Conversion of Data Types . 2-13
Automatic Conversion to a MATLAB Type 2-14
Specify Optional Arguments . 2-16
Handle Return Values . 2-20

Pass Java Objects by Reference . 2-25
MATLAB Array . 2-25
Wrap and Pass Objects to MATLAB 2-25

Use Multiple Packages in Single Application 2-30
Work with MATLAB Function Handles 2-30
Work with Objects . 2-32

Error Handling . 2-35
Error Overview . 2-35
Handling Checked Exceptions . 2-35
Handling Unchecked Exceptions . 2-38
Alternatives to Using of System.exit 2-40

Manage MATLAB Resources . 2-41
Why MATLAB Resources Need to be Managed 2-41
Creating MATLAB Objects . 2-41
Disposing of MATLAB Objects . 2-42

MATLAB Runtime User Data Interface 2-44

Supply Run-Time Profile Information for Parallel Computing
Toolbox Applications . 2-45

Step 1: Write Your Parallel Computing Toolbox Code 2-45
Step 2: Set the Parallel Computing Toolbox Profile 2-46
Step 3: Compile Your Function with the Library Compiler App

or the Command Line Compiler 2-47
Step 4: Write the Java Driver Application 2-47

Dynamically Specify Options to the MATLAB Runtime . . . 2-50
What Options Can You Specify? . 2-50
Setting and Retrieving MATLAB Runtime Option Values Using

MWApplication . 2-50

Data Conversion Between Java and MATLAB 2-53
Overview . 2-53

iv Contents

Call MWArray Methods . 2-53
Create Buffered Images from a MATLAB Array 2-54

Set Java Properties . 2-55
How to Set Java System Properties 2-55
Ensure a Consistent GUI Appearance 2-55

Execution of Applications that Create Figures 2-57

Ensuring Multi-Platform Portability 2-59

Deployable Archive Embedding and Extraction 2-61
Overview . 2-61
Use MWComponentOptions Class to Indicate Extraction

Options . 2-61
Use Environment Variables to Indicate Extraction Options . 2-63
For More Information . 2-64

Explore the Javadoc . 2-65

Distribute Integrated Java Applications
3

Package Java Applications . 3-2

About the MATLAB Runtime . 3-3
How is the MATLAB Runtime Different from MATLAB? 3-3
Performance Considerations and the MATLAB Runtime 3-4

Install and Configure the MATLAB Runtime 3-5
Download the MATLAB Runtime Installer from the Web . . . 3-5
Install the MATLAB Runtime Interactively 3-5
Install the MATLAB Runtime Non-Interactively 3-7
Install the MATLAB Runtime without Administrator Rights . 3-9
Multiple MATLAB Runtime Versions on Single Machine . . . 3-9
MATLAB and MATLAB Runtime on Same Machine 3-10
Uninstall MATLAB Runtime . 3-11

v

Distribute to End Users
4

MATLAB Runtime Path Settings for Development and
Testing . 4-2

Path for Java Development on All Platforms 4-2
Path Modifications Required for Accessibility 4-2
Windows Settings for Development and Testing 4-2
Linux Settings for Development and Testing 4-2
OS X Settings for Development and Testing 4-3

MATLAB Runtime Path Settings for Run-Time
Deployment . 4-4

General Path Guidelines . 4-4
Path for Java Applications on All Platforms 4-4
Windows Path for Run-Time Deployment 4-4
Linux Paths for Run-Time Deployment 4-5
OS X Paths for Run-Time Deployment 4-5

Sample Java Applications
5

Display a MATLAB Plot in a Java Application 5-2
Purpose . 5-2
Procedure . 5-2

Create a Java Application with Two MATLAB Functions . . 5-7
Purpose . 5-7
Procedure . 5-7

Matrix Math . 5-13
Purpose . 5-13
MATLAB Functions to Be Encapsulated 5-14
Understanding the getfactor Program 5-14
Procedure . 5-14

Phone Book . 5-22
Purpose . 5-22
Procedure . 5-22

vi Contents

Pass Java Objects to MATLAB . 5-28
Purpose . 5-28
OptimDemo Package . 5-28
Prerequisites . 5-29
Procedure . 5-30

Display a MATLAB Plot on the Web using a Java Servlet . 5-38
Overview . 5-38
Prerequisites . 5-38
Locating and Copying the Example Files 5-39
Build Your Java Package . 5-40
Compiling Your Java Code . 5-40
Generating the Web Archive (WAR) File 5-41
Running the Web Deployment Example 5-41
Using the Web Application . 5-42

Display MATLAB Figures Over the Web
6

How Do WebFigures Work? . 6-2

Supported Renderers for WebFigures 6-3

Implement a WebFigure . 6-4

Attach a WebFigure to a Server Cache 6-9
Attaching to the Session Cache . 6-9
Attaching to the Application Cache 6-10

Reference a WebFigure Using the JSP Tag 6-11
Initialize the JSP Tag . 6-11
Attributes of a WebFigure Tag . 6-11

Reference a WebFigure Using an Embeddable String 6-13

vii

Working with MATLAB Figures and Images
7

Roles in Working with Figures and Images 7-2

Work with MATLAB Figure and Image Data 7-3
For More Comprehensive Examples 7-3
Working with Figures . 7-3
Working with Images . 7-3

Creating Scalable Web Applications Using RMI
8

Use Remote Method Invocation (RMI) 8-2

RMI Prerequisites . 8-3
Ensure You Have the Required Products 8-3
Ensure Your Web Server Is Java Compliant 8-3
Install the javabuilder.jar Library . 8-3

Run Client and Server on Same Machine 8-4

Run Client and Server on Separate Machines 8-7

Why Use Native Cell Arrays and Struct Arrays? 8-8
Using Native Types Does Not Require a Client-Side MATLAB

Runtime . 8-8

Native Data Marshaling Prerequisites 8-9

Use Native Java Cell and Struct Arrays 8-10
Before You Run the Example . 8-10
Running the Example . 8-10

Additional RMI Examples . 8-14

viii Contents

Troubleshooting
9

Common MATLAB Compiler SDK Error Messages 9-2

Reference Information for Java
10

Requirements for the MATLAB Compiler SDK Java
Target . 10-2

System Requirements . 10-2
Path Modifications Required for Accessibility 10-2
Limitations of the MATLAB Compiler SDK Java Target . . . 10-3

Rules for Data Conversion Between Java and MATLAB . . 10-4
Java to MATLAB Conversion . 10-4
MATLAB to Java Conversion . 10-5
Unsupported MATLAB Array Types 10-7

Programming Interfaces Generated MATLAB Compiler
SDK . 10-8

APIs Based on MATLAB Function Signatures 10-8
Standard API . 10-9
mlx API . 10-10
Code Fragment: Signatures Generated for the myprimes

Example . 10-10

Share MATLAB Runtime Instances 10-12
What Is a Singleton MATLAB Runtime? 10-12
Advantages and Disadvantages of Using a Singleton 10-12

MWArray Class Specification . 10-13

Functions — Alphabetical List
11

ix

1

Overview

• “Product Overview” on page 1-2
• “Configure Your Java Environment” on page 1-3

1 Overview

Product Overview

In this section...

“How Does Java Package Deployment Work?” on page 1-2
“Limitations of Support” on page 1-2

How Does Java Package Deployment Work?

There are two kinds of deployment:

• Installing the generated packages and setting up support for them on a development
machine so that they can be accessed by a developer who seeks to use them in writing
a Java application.

• Deploying support for the generated packages when they are accessed at run time on
an end user machine.

To accomplish this kind of deployment, you must make sure that the installer you
create for the application takes care of supporting the Java packages on the target
machine. In general, this means the MATLAB Runtime must be installed, on the
target machine. You must also install the compiler generated packages.

Note: Java packages created with the MATLAB Compiler SDK product are dependent
on the version of MATLAB with which they were built.

Limitations of Support

MATLAB Compiler SDK provides a wide variety of support for various Java types and
objects. However, MATLAB objects are not supported as inputs or outputs for compiled or
deployed functions.

1-2

 Configure Your Java Environment

Configure Your Java Environment

In this section...

“Install the Required JDK” on page 1-3
“Set JAVA_HOME” on page 1-4
“Set the CLASSPATH” on page 1-4
“Configure the Native Library Path Variables” on page 1-5

Before you can use the generated Java packages in a Java development environment, you
need to ensure that your Java environment is properly configured. You must verify that:

• Your system uses the same version of the Java Developer’s Kit (JDK™) as MATLAB.
• JAVA_HOME is set to the folder containing the system’s JDK installation.
• CLASSPATH contains all of the MATLAB library JAR files and the JAR files for the

packages containing your compiled MATLAB code.
• The MATLAB native library paths are properly configured.

Note: For updated Java system requirements, including versions of Java Developer's
Kit (JDK) and Java Runtime Environment (JRE™), see the supported compiler page at
http://www.mathworks.com/support/compilers/current_release/.

Install the Required JDK

To install the proper version of the JDK:

1 Verify the version of Java your MATLAB installation is using by running the
following MATLAB command:

version -java

2 Download the matching version Java Developer's Kit (JDK) from http://
www.oracle.com/us/technologies/java/standard-edition/overview/index.html.

3 Install the JDK, following the instructions provided by Oracle®.

Note: If you are not developing applications or compiling MATLAB code, you can use the
Java Runtime Environment (JRE) instead of the JDK.

1-3

http://www.mathworks.com/support/compilers/current_release/
http://www.oracle.com/us/technologies/java/standard-edition/overview/index.html
http://www.oracle.com/us/technologies/java/standard-edition/overview/index.html

1 Overview

Set JAVA_HOME

1 From the system command prompt, set the system environment variable,
JAVA_HOME, to point to your JDK installation.

For example on Windows® enter set JAVA_HOME=path_to_Java_install.
2 If you are compiling MATLAB code, verify that MATLAB is reading the correct value

of JAVA_HOME.

At the MATLAB command prompt, type getenv JAVA_HOME to display the value of
JAVA_HOME in use by MATLAB.

3 Verify that the folder containing your Java installation has been added to your
system PATH environment variable.

For example on Windows enter set PATH=%PATH%;path_to_Java_install.

Set the CLASSPATH

To build and run a Java application that uses a MATLAB Compiler SDK generated
component, the system must locate:

• JAR files containing the MATLAB libraries
• Packages that you have developed and built

Java classes compiled with MATLAB Compiler SDK use classes contained in the
com.mathworks.toolbox.javabuilder package. To use the compiled classes, you
need to include a file called javabuilder.jar on the Java class path. You can find this
file in one of the following folders:

MATLAB installed on your system matlabroot/toolbox/javabuilder/

jar

MATLAB Runtime installed on your
system

mcrroot/toolbox/javabuilder/jar

Note: matlabroot refers to the root folder into which the MATLAB installer has placed
the MATLAB files. mcrroot refers to the root folder under which MATLAB Runtime is
installed.

In addition, you need to add to the JAR files created by the compiler to the class path.

1-4

 Configure Your Java Environment

Configure the Native Library Path Variables

The operating system uses the native library path to locate native libraries that are
needed to run your Java class. See the following list of variable names according to
operating system:

Windows PATH

Linux® LD_LIBRARY_PATH

Macintosh DYLD_LIBRARY_PATH

The native MATLAB or MATLAB Runtime files needed to execute the compiled
MATLAB functions called from the Java code must be included on the paths listed by
your system’s native library path variable.

1-5

2

Programming

• “MATLAB Compiler SDK and the JVM” on page 2-2
• “Integrate a Java Package into an Application” on page 2-3
• “About the MATLAB Compiler SDK Java API” on page 2-8
• “Pass Arguments To and From Java” on page 2-13
• “Pass Java Objects by Reference” on page 2-25
• “Use Multiple Packages in Single Application” on page 2-30
• “Error Handling” on page 2-35
• “Manage MATLAB Resources” on page 2-41
• “MATLAB Runtime User Data Interface” on page 2-44
• “Supply Run-Time Profile Information for Parallel Computing Toolbox Applications”

on page 2-45
• “Dynamically Specify Options to the MATLAB Runtime” on page 2-50
• “Data Conversion Between Java and MATLAB” on page 2-53
• “Set Java Properties” on page 2-55
• “Execution of Applications that Create Figures” on page 2-57
• “Ensuring Multi-Platform Portability” on page 2-59
• “Deployable Archive Embedding and Extraction” on page 2-61
• “Explore the Javadoc” on page 2-65

Note: For examples of these tasks, see the sample Java applications in this
documentation.

For information about deploying your application after you complete these tasks, see
“How Does Java Package Deployment Work?” on page 1-2.

2 Programming

MATLAB Compiler SDK and the JVM

Packages produced by MATLAB Compiler SDK use Java Native Interface (JNI) to
interact with the MATLAB Runtime.

When the first MATLAB Compiler SDK object is instantiated:

1 Dependent MATLAB Compiler SDK classes are loaded.
2 A series of shared libraries forming the JNI bridge from the generated package to

the MATLAB Runtime are loaded.
3 The MATLAB Runtime is initialized by creating an instance of a C++ class called

mcrInstance.
4 The MATLAB-Java interface establishes a connection to the JVM™ by calling the

JNI method AttachCurrentThread.
5 AttachCurrentThread creates a class loader that loads all classes needed by

MATLAB code utilizing the MATLAB-Java interface.
6 The MATLAB Runtime C++ core allocates resources for the arrays created by the

Java API.

As you create MWArray objects to interact with the MATLAB Runtime, the JVM creates
a wrapper object for the MATLAB mxArray object. The MATLAB Runtime C++ core
allocates the actual resources to store the mxArray object. This has an impact on how
the JVM frees up resources used by your application. Most of the resources used when
interacting with MATLAB are created by the MATLAB Runtime C++ core. The JVM
only knows about the MATLAB resources through the JNI wrappers created for them.
Because of this, the JVM does not know the size of the resources being consumed and
cannot effectively manage them using its built in garbage collector. The JVM also does
not manage the threads used by the MATLAB Runtime and cannot clean them up.

All of the MATLAB Compiler SDK classes have static methods to properly dispose of
their resources. The disposal methods trigger the freeing of the underlying resources
in the MATLAB Runtime C++ core. Not properly disposing of MATLAB Compiler SDK
objects can result in unpredictable behavior and may look like your application has a
memory leak.

2-2

 Integrate a Java Package into an Application

Integrate a Java Package into an Application

This example shows how to invoke a MATLAB generated method in a Java application.

To create a Java application that calls a MATLAB generated method:

1 Install the MATLAB Runtime and generated JAR files in one of the following ways:

• Run the installer generated by MATLAB. It is located in the
for_redistributionfolder of the deployment project.

Doing so automatically installs the MATLAB Runtime from the web and places
the generated JAR files onto your computer.

• Manually install the MATLAB Runtime and the generated JAR files onto your
development system.

You can download the MATLAB Runtime installer from http://
www.mathworks.com/products/compiler/mcr. The generated JAR files are located
in the MATLAB deployment project's for_testing folder.

2 In the folder containing the generated JAR files, create a new file called
getmagic.java.

3 Using a text editor, open getmagic.java.
4 Place the following as the first line in the file.

import com.mathworks.toolbox.javabuilder.*;

This statement imports the MATLAB support classes.
5 Place the following line after the first import statement.

import makesqr.*;

This statement imports the classes generated by the compiler.
6 Add the following class definition.

class getmagic

{

}

This class has a single main method that calls the generated class.
7 Add the main() method to the application.

public static void main(String[] args)

2-3

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

2 Programming

{

}

8 Add the following code to the top of the main() method.

MWNumericArray n = null;

Object[] result = null;

Class1 theMagic = null;

This initializes the variables used by the application.

• n is an instance of the MATLAB MWNumericArray class that MATLAB uses for
its internal data format.

• result is a generic Java object that holds the results of the call to MATLAB.
• theMagic is an instance class generated from the MATLAB function.

9 Add the following code after the variable initialization.

if (args.length == 0)

{

 System.out.println("Error: must input a positive integer");

 return;

}

This is a simple check to ensure that the required command-line argument was
passed to the application.

10 Add a try/catch/finally block after the argument check.
11 In the try section of the try/catch/finally block, add the following code.

n = new MWNumericArray(Double.valueOf(args[0]), MWClassID.DOUBLE);

The code instantiates an instance of MWNumericArray and populates it with a 1-
by-1 array containing the integer passed to the application on the command line. The
value is converted to a Double because that is the most direct mapping between the
Java and MATLAB internal data representation.

12 After the code instantiating the input parameter, add the following to instantiate the
class generated from MATLAB.

theMagic = new Class1();

The constructor for the generated class handles all of the setup required to start the
MATLAB Runtime and populate it with the required MATLAB code.

13 Using the newly instantiated object, call the MATLAB function.

2-4

 Integrate a Java Package into an Application

result = theMagic.makesqr(1, n);

System.out.println(result[0]);

14 Add the following catch section to the try/catch/finally block to handle any
exceptions that might be thrown.

catch (Exception e)

{

 System.out.println("Exception: " + e.toString());

}

15 Add the following finally section to the try/catch/finally block to clean up any
resources.

finally

{

 MWArray.disposeArray(n);

 MWArray.disposeArray(result);

 theMagic.dispose();

}

The disposeArray() and dispose() methods clean up the resources used by the
generated MATLAB code.

16 Save the Java file.

The completed Java file should resemble the following.

import com.mathworks.toolbox.javabuilder.*;

import makesqr.*;

class getmagic

{

 public static void main(String[] args)

 {

 MWNumericArray n = null;

 Object[] result = null;

 Class1 theMagic = null;

 if (args.length == 0)

 {

 System.out.println("Error: must input a positive integer");

 return;

 }

 try

2-5

2 Programming

 {

 n = new MWNumericArray(Double.valueOf(args[0]),

 MWClassID.DOUBLE);

 theMagic = new Class1();

 result = theMagic.makesqr(1, n);

 System.out.println(result[0]);

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 }

 finally

 {

 MWArray.disposeArray(n);

 MWArray.disposeArray(result);

 theMagic.dispose();

 }

 }

}

17 Use the system's command line to navigate to the folder where you installed the
generated Java package and saved the new Java file.

18 Compile the Java application using javac.

javac -classpath "mcrroot\toolbox\javabuilder\jar\javabuilder.jar";

 .\makesqr.jar .\getmagic.java

Note: Enter the javac command on a single line.

On UNIX® platforms, use colon (:) as the class path delimiter instead of semicolon
(;).

mcrroot is the path to where the MATLAB Runtime is installed on your system. If
you have MATLAB installed on your system instead, you can use the path to your
MATLAB installation.

19 From the system's command prompt, run the application.

java -classpath .;"mcrroot\toolbox\javabuilder\jar\javabuilder.jar";

 .\makesqr.jar getmagic 5

 17 24 1 8 15

2-6

 Integrate a Java Package into an Application

 23 5 7 14 16

 4 6 13 20 22

 10 12 19 21 3

 11 18 25 2 9

You must be sure to place a dot (.) in the first position of the class path. If it not, you
get a message stating that Java cannot load the class.

Note: Enter the java command on a single line.

On UNIX platforms, use colon (:) as the class path delimiter instead of semicolon (;).

mcrroot is the path to where the MATLAB Runtime is installed on your system. If
you have MATLAB installed on your system instead, you can use the path to your
MATLAB installation.

To follow up on this example:

• Try installing the new application on a different computer.
• Try building an installer for the application.
• Try integrating a package that consists of multiple functions.

2-7

2 Programming

About the MATLAB Compiler SDK Java API

In this section...

“What Are MATLAB Generated Java Packages and When Should You Create Them?” on
page 2-8
“Understanding the MATLAB Compiler SDK Java API Data Conversion Classes” on
page 2-8
“Automatic Conversion to MATLAB Types” on page 2-10
“Understanding Function Signatures Generated by the MATLAB Compiler SDK
Product” on page 2-10
“Adding Fields to Data Structures and Data Structure Arrays” on page 2-11
“Returning Data from MATLAB to Java” on page 2-12

What Are MATLAB Generated Java Packages and When Should You
Create Them?

MATLAB generated Java packages include one or more Java classes that wrap your
MATLAB functions. The classes provide methods that allow you to call the functions as
you would any other Java method. In addition, the generated classes provide all of the
functionality required to manage the MATLAB Runtime required to run the MATLAB
functions.

The compiler encrypts your MATLAB functions and generates a Java wrapper around
them so that they behave just like any other Java class. You can deploy generated
packages to enterprise or Web environments, sharing them with anyone running a Web
browser and having the MATLAB Runtime installed.

For development on Linux platforms, Java packages and applications provide portable
and scalable solutions for applications in large-scale enterprise or Web environments.

Understanding the MATLAB Compiler SDK Java API Data Conversion
Classes

When writing your Java application, you can represent your data using objects of any
of the data conversion classes. Alternatively, you can use standard Java data types and
objects.

2-8

 About the MATLAB Compiler SDK Java API

The data conversion classes are built as a class hierarchy that represents the major
MATLAB array types.

Note: This discussion provides conceptual information about the classes. For details, see
com.mathworks.toolbox.javabuilder.

This discussion assumes you have a working knowledge of the Java programming
language and the Java Software Developer's Kit (SDK). This is not intended to be a
discussion on how to program in Java. Refer to the documentation that came with your
Java SDK for general programming information.

Overview of Classes and Methods in the Data Conversion Class Hierarchy

The root of the data conversion class hierarchy is the MWArray abstract class.
The MWArray class has the following subclasses representing the major MATLAB
types: MWNumericArray, MWLogicalArray, MWCharArray, MWCellArray, and
MWStructArray.

Each subclass stores a reference to a native MATLAB array of that type. Each class
provides constructors and a basic set of methods for accessing the underlying array's
properties and data. To be specific, MWArray and the classes derived from MWArray
provide the following:

• Constructors and finalizers to instantiate and dispose of MATLAB arrays
• get and set methods to read and write the array data
• Methods to identify properties of the array
• Comparison methods to test the equality or order of the array
• Conversion methods to convert to other data types

Advantage of Using Data Conversion Classes

The MWArray data conversion classes let you pass native type parameters directly
without using explicit data conversion. If you pass the same array frequently, you might
improve the performance of your program by storing the array in an instance of one of
the MWArray subclasses.

2-9

2 Programming

Automatic Conversion to MATLAB Types

Note: Because the conversion process is automatic (in most cases), you do not need
to understand the conversion process to pass and return arguments with MATLAB
Compiler SDK generated methods.

When you pass an MWArray instance as an input argument, the encapsulated MATLAB
array is passed directly to the method being called.

In contrast, if your code uses a native Java primitive or array as an input parameter,
the compiler converts it to an instance of the appropriate MWArray class before it is
passed to the method. The compiler can convert any Java string, numeric type, or any
multidimensional array of these types to an appropriate MWArray type, using its data
conversion rules. See “Rules for Data Conversion Between Java and MATLAB” on page
10-4 for a list of all the data types that are supported along with their equivalent
types in MATLAB.

The conversion rules apply not only when calling your own methods, but also when
calling constructors and factory methods belonging to the MWArray classes.

Note: To work directly with cell arrays and data structures in native Java, see “Use
Native Java Cell and Struct Arrays” on page 8-10 for information and comprehensive
examples.

Understanding Function Signatures Generated by the MATLAB Compiler
SDK Product

The Java programming language now supports optional function arguments in the
way that MATLAB does with varargin and varargout. To support this feature of
MATLAB, the compiler generates a single overloaded Java method that accommodates
any number of input arguments. This behavior is an enhancement over previous versions
of varargin support that only handled a limited number of arguments.

Note: In addition to handling optional function arguments, the overloaded Java methods
that wrap MATLAB functions handle data conversion. See “Automatic Conversion to
MATLAB Types” on page 2-10 for more details.

2-10

 About the MATLAB Compiler SDK Java API

Understanding MATLAB Function Signatures

As background, recall that the generic MATLAB function has the following structure:

function [Out1, Out2, ..., varargout]=

 foo(In1, In2, ..., varargin)

To the left of the equal sign, the function specifies a set of explicit and optional return
arguments.

To the right of the equal sign, the function lists explicit input arguments followed by one
or more optional arguments.

Each argument represents a MATLAB type. When you include the varargin or
varargout argument, you can specify any number of inputs or outputs beyond the ones
that are explicitly declared.

Overloaded Methods in Java That Encapsulate MATLAB Code

When the MATLAB Compiler SDK product encapsulates your MATLAB code, it creates
an overloaded method that implements the MATLAB functions. This overloaded method
corresponds to a call to the generic MATLAB function for each combination of the
possible number and type of input arguments.

In addition to encapsulating input arguments, the compiler creates another method,
which represents the output arguments, or return values, of the MATLAB function. This
additional overloaded method takes care of return values for the encapsulated MATLAB
function. This method of encapsulating the information about return values simulates
the mlx interface generated for the C/C++ MATLAB Compiler SDK target.

These overloaded methods are called the standard interface and the mlx interface. See
“Programming Interfaces Generated MATLAB Compiler SDK” on page 10-8 for
details.

Adding Fields to Data Structures and Data Structure Arrays

When adding fields to data structures and data structure arrays, do so using standard
programming techniques. Do not use the set command as a shortcut.

2-11

2 Programming

Returning Data from MATLAB to Java

All data returned from a method coded in MATLAB is passed as an instance of the
appropriate MWArray subclass. For example, a MATLAB cell array is returned to the
Java application as an MWCellArray object.

Return data is not converted to a Java type. If you choose to use a Java type, you must
convert to that type using the toArray method of the MWArray subclass to which the
return data belongs.

Note: To work directly with cell arrays and data structures in native Java, see “Use
Native Java Cell and Struct Arrays” on page 8-10 for information and comprehensive
examples.

2-12

 Pass Arguments To and From Java

Pass Arguments To and From Java

In this section...

“Format” on page 2-13
“Manual Conversion of Data Types” on page 2-13
“Automatic Conversion to a MATLAB Type” on page 2-14
“Specify Optional Arguments” on page 2-16
“Handle Return Values” on page 2-20

Format

When you invoke a method on a generated class, the input arguments received by the
method must be in the MATLAB internal array format. You can either convert them
yourself within the calling program, or pass the arguments as Java data types, which are
then automatically converted by the calling mechanism.

To convert them yourself, use instances of the MWArray classes; in this case you are using
manual conversion. Storing your data using the classes and data types defined in the
Java language means that you are relying on automatic conversion. Most likely, you will
use a combination of manual and automatic conversion.

Manual Conversion of Data Types

To manually convert to one of the standard MATLAB data types, use the MWArray data
conversion classes provided by the compiler. For class reference and usage information,
see the com.mathworks.toolbox.javabuilder package.

Using MWNumericArray

The Magic Square example (“Integrate a Java Package into an Application” on page 2-3)
exemplifies manual conversion. The following code fragment from that program shows a
java.lang.Double argument that is converted to an MWNumericArray type that can
be used by the MATLAB function without further conversion:

n = new MWNumericArray(Double.valueOf(args[0]),

 MWClassID.DOUBLE);

2-13

2 Programming

 theMagic = new Class1();

 result = theMagic.makesqr(1, n);

Passing an MWArray

This example constructs an MWNumericArray of type MWClassID.DOUBLE. The call to
myprimes passes the number of outputs, 1, and the MWNumericArray, x:

x = new MWNumericArray(n, MWClassID.DOUBLE);

cls = new myclass();

y = cls.myprimes(1, x);

The Java bridge converts the MWNumericArray object to a MATLAB scalar double to
pass to the MATLAB function.

Automatic Conversion to a MATLAB Type

When passing an argument only a small number of times, it is usually just as efficient
to pass a primitive Java type or object. In this case, the calling mechanism converts the
data for you into an equivalent MATLAB type.

For instance, either of the following Java types would be automatically converted to the
MATLAB double type:

• A Java double primitive
• An object of class java.lang.Double

For reference information about data conversion (tables showing each Java type along
with its converted MATLAB type, and each MATLAB type with its converted Java type),
see “Rules for Data Conversion Between Java and MATLAB” on page 10-4.

Automatic Data Conversion

When calling the makesqr method used in the getmagic application, you could
construct an object of type MWNumericArray. Doing so would be an example of manual
conversion. Instead, you could rely on automatic conversion, as shown in the following
code fragment:

result = M.makesqr(1, arg[0]);

In this case, a Java double is passed as arg[0].

2-14

 Pass Arguments To and From Java

Here is another example:

result = theFourier.plotfft(3, data, new Double(interval));

In this Java statement, the third argument is of type java.lang.Double. According to
conversion rules, the java.lang.Double automatically converts to a MATLAB 1-by-1
double array.

Passing a Java Double Object

The example calls the myprimes method with two arguments. The first specifies the
number of arguments to return. The second is an object of class java.lang.Double that
passes the one data input to myprimes.

cls = new myclass();

y = cls.myprimes(1, new Double((double)n));

This second argument is converted to a MATLAB 1-by-1 double array, as required by
the MATLAB function. This is the default conversion rule for java.lang.Double.

Passing an MWArray

This example constructs an MWNumericArray of type MWClassID.DOUBLE. The call to
myprimes passes the number of outputs, 1, and the MWNumericArray, x.

x = new MWNumericArray(n, MWClassID.DOUBLE);

cls = new myclass();

y = cls.myprimes(1, x);

The compiler converts the MWNumericArray object to a MATLAB scalar double to pass
to the MATLAB function.

Calling MWArray Methods

The conversion rules apply not only when calling your own methods, but also when
calling constructors and factory methods belonging to the MWArray classes.

For example, the following code fragment calls the constructor for the MWNumericArray
class with a Java double as the input argument:

double Adata = 24;

MWNumericArray A = new MWnumericArray(Adata);

2-15

2 Programming

System.out.println("Array A is of type " + A.classID());

The compiler converts the input argument to an instance of MWNumericArray, with
a ClassID property of MWClassID.DOUBLE. This MWNumericArray object is the
equivalent of a MATLAB 1-by-1 double array.

When you run this example, the result is as follows:

Array A is of type double

Changing the Default by Specifying the Type

When calling an MWArray class method constructor, supplying a specific data type causes
the MATLAB Compiler SDK product to convert to that type instead of the default.

For example, in the following code fragment, the code specifies that A should be
constructed as a MATLAB 1-by-1 16-bit integer array:

double Adata = 24;

MWNumericArray A = new MWnumericArray(Adata, MWClassID.INT16);

System.out.println("Array A is of type " + A.classID());

When you run this example, the result is as follows:

Array A is of type int16

Specify Optional Arguments

So far, the examples have not used MATLAB functions that have varargin or
varargout arguments. Consider the following MATLAB function:

function y = mysum(varargin)

y = sum([varargin{:}]);

This function returns the sum of the inputs. The inputs are provided as a varargin
argument, which means that the caller can specify any number of inputs to the function.
The result is returned as a scalar double.

Pass Variable Numbers of Inputs

The MATLAB Compiler SDK product generates a Java interface to this function as
follows:

2-16

 Pass Arguments To and From Java

/* mlx interface - List version*/

public void mysum(List lhs, List rhs)

 throws MWException

{

 (implementation omitted)

}

/* mlx interface - Array version*/

public void mysum(Object[] lhs, Object[] rhs)

 throws MWException

{

 (implementation omitted)

}

/* standard interface - no inputs */

public Object[] mysum(int nargout) throws MWException

{

 (implementation omitted)

}

/* standard interface - variable inputs */

public Object[] mysum(int nargout, Object varargin)

 throws MWException

{

 (implementation omitted)

}

In all cases, the varargin argument is passed as type Object. This lets you provide any
number of inputs in the form of an array of Object, that is Object[], and the contents
of this array are passed to the compiled MATLAB function in the order in which they
appear in the array. Here is an example of how you might use the mysum method in a
Java program:

public double getsum(double[] vals) throws MWException

{

 myclass cls = null;

 Object[] x = {vals};

 Object[] y = null;

 try

 {

 cls = new myclass();

 y = cls.mysum(1, x);

 return ((MWNumericArray)y[0]).getDouble(1);

 }

2-17

2 Programming

 finally

 {

 MWArray.disposeArray(y);

 if (cls != null)

 cls.dispose();

 }

}

In this example, an Object array of length 1 is created and initialized with a reference
to the supplied double array. This argument is passed to the mysum method. The
result is known to be a scalar double, so the code returns this double value with the
statement:

return ((MWNumericArray)y[0]).getDouble(1);

Cast the return value to MWNumericArray and invoke the getDouble(int) method to
return the first element in the array as a primitive double value.

Pass Array Inputs

The next example performs a more general calculation:

public double getsum(Object[] vals) throws MWException

{

 myclass cls = null;

 Object[] x = null;

 Object[] y = null;

 try

 {

 x = new Object[vals.length];

 for (int i = 0; i < vals.length; i++)

 x[i] = new MWNumericArray(vals[i], MWClassID.DOUBLE);

 cls = new myclass();

 y = cls.mysum(1, x);

 return ((MWNumericArray)y[0]).getDouble(1);

 }

 finally

 {

 MWArray.disposeArray(x);

 MWArray.disposeArray(y);

 if (cls != null)

 cls.dispose();

2-18

 Pass Arguments To and From Java

 }

}

This version of getsum takes an array of Object as input and converts each value to a
double array. The list of double arrays is then passed to the mysum function, where it
calculates the total sum of each input array.

Pass a Variable Number of Outputs

When present, varargout arguments are handled in the same way that varargin
arguments are handled. Consider the following MATLAB function:

function varargout = randvectors

for i=1:nargout

 varargout{i} = rand(1, i);

end

This function returns a list of random double vectors such that the length of the ith
vector is equal to i. The MATLAB Compiler™ product generates a Java interface to this
function as follows:

/* mlx interface - List version */

 public void randvectors(List lhs, List rhs) throws MWException

{

 (implementation omitted)

}

/* mlx interface – Array version */

public void randvectors(Object[] lhs,

 Object[] rhs) throws MWException

{

 (implementation omitted)

}

/* Standard interface – no inputs*/

public Object[] randvectors(int nargout) throws MWException

{

 (implementation omitted)

}

Pass Optional Arguments with the Standard Interface

Here is one way to use the randvectors method in a Java program:

public double[][] getrandvectors(int n) throws MWException

2-19

2 Programming

{

 myclass cls = null;

 Object[] y = null;

 try

 {

 cls = new myclass();

 y = cls.randvectors(n);

 double[][] ret = new double[y.length][];

 for (int i = 0; i < y.length; i++)

 ret[i] = (double[])((MWArray)y[i]).getData();

 return ret;

 }

 finally

 {

 MWArray.disposeArray(y);

 if (cls != null)

 cls.dispose();

 }

}

The getrandvectors method returns a two-dimensional double array with a
triangular structure. The length of the ith row equals i. Such arrays are commonly
referred to as jagged arrays. Jagged arrays are easily supported in Java because a Java
matrix is just an array of arrays.

Handle Return Values

The previous examples used the fact that you knew the type and dimensionality of
the output argument. In the case that this information is unknown, or can vary (as is
possible in MATLAB programming), the code that calls the method might need to query
the type and dimensionality of the output arguments.

There are several ways to do this. Do one of the following:

• Use reflection support in the Java language to query any object for its type.
• Use several methods provided by the MWArray class to query information about the

underlying MATLAB array.
• Coercing to a specific type using the toTypeArray methods.

2-20

 Pass Arguments To and From Java

Use Java Reflection to Determine Type and Dimensionality

This code sample calls the myprimes method, and then determines the type using
reflection. The example assumes that the output is returned as a numeric matrix but the
exact numeric type is unknown.

public void getprimes(int n) throws MWException

{

 myclass cls = null;

 Object[] y = null;

 try

 {

 cls = new myclass();

 y = cls.myprimes(1, new Double((double)n));

 Object a = ((MWArray)y[0]).toArray();

 if (a instanceof double[][])

 {

 double[][] x = (double[][])a;

 /* (do something with x...) */

 }

 else if (a instanceof float[][])

 {

 float[][] x = (float[][])a;

 /* (do something with x...) */

 }

 else if (a instanceof int[][])

 {

 int[][] x = (int[][])a;

 /* (do something with x...) */

 }

 else if (a instanceof long[][])

 {

 long[][] x = (long[][])a;

 /* (do something with x...) */

 }

2-21

2 Programming

 else if (a instanceof short[][])

 {

 short[][] x = (short[][])a;

 /* (do something with x...) */

 }

 else if (a instanceof byte[][])

 {

 byte[][] x = (byte[][])a;

 /* (do something with x...) */

 }

 else

 {

 throw new MWException(

 "Bad type returned from myprimes");

 }

 }

This example uses the toArray method to return a Java primitive array representing
the underlying MATLAB array. The toArray method works just like getData in the
previous examples, except that the returned array has the same dimensionality as the
underlying MATLAB array.

Use MWArray Query to Determine Type and Dimensionality

The next example uses the MWArray classID method to determine the type
of the underlying MATLAB array. It also checks the dimensionality by calling
numberOfDimensions. If any unexpected information is returned, an exception is
thrown. It then checks the MWClassID and processes the array accordingly.

public void getprimes(int n) throws MWException

{

 myclass cls = null;

 Object[] y = null;

 try

 {

 cls = new myclass();

 y = cls.myprimes(1, new Double((double)n));

 MWClassID clsid = ((MWArray)y[0]).classID();

2-22

 Pass Arguments To and From Java

 if (!clsid.isNumeric() ||

 ((MWArray)y[0]).numberOfDimensions() != 2)

 {

 throw new MWException("Bad type

 returned from myprimes");

 }

 if (clsid == MWClassID.DOUBLE)

 {

 double[][] x = (double[][])((MWArray)y[0]).toArray();

 /* (do something with x...) */

 }

 else if (clsid == MWClassID.SINGLE)

 {

 float[][] x = (float[][])((MWArray)y[0]).toArray();

 /* (do something with x...) */

 }

 else if (clsid == MWClassID.INT32 ||

 clsid == MWClassID.UINT32)

 {

 int[][] x = (int[][])((MWArray)y[0]).toArray();

 /* (do something with x...) */

 }

 else if (clsid == MWClassID.INT64 ||

 clsid == MWClassID.UINT64)

 {

 long[][] x = (long[][])((MWArray)y[0]).toArray();

 /* (do something with x...) */

 }

 else if (clsid == MWClassID.INT16 ||

 clsid == MWClassID.UINT16)

 {

 short[][] x = (short[][])((MWArray)y[0]).toArray();

 /* (do something with x...) */

2-23

2 Programming

 }

 else if (clsid == MWClassID.INT8 ||

 clsid == MWClassID.UINT8)

 {

 byte[][] x = (byte[][])((MWArray)y[0]).toArray();

 /* (do something with x...) */

 }

 }

 finally

 {

 MWArray.disposeArray(y);

 if (cls != null)

 cls.dispose();

 }

}

Use toTypeArray Methods to Determine Type and Dimensionality

The next example demonstrates how you can coerce or force data to a specified numeric
type by invoking any of the toTypeArray methods. These methods return an array of
Java elements of the type specified in the name of the called method. The data is coerced
or forced to the primitive type specified in the method name. Note that when using these
methods, data will be truncated when needed to allow conformance to the specified data
type.

Object results = null;

try {

 // call a compiled MATLAB function

 results = myobject.myfunction(2);

 // first output is known to be a numeric matrix

 MWArray resultA = (MWNumericArray) results[0];

 double[][] a = (double[][]) resultA.toDoubleArray();

 // second output is known to be

 // a 3-dimensional numeric array

 MWArray resultB = (MWNumericArray) results[1];

 Int[][][] b = (Int[][][]) resultB.toIntArray();

}

 finally {

 MWArray.disposeArray(results);

}

2-24

 Pass Java Objects by Reference

Pass Java Objects by Reference

In this section...

“MATLAB Array” on page 2-25
“Wrap and Pass Objects to MATLAB ” on page 2-25

MATLAB Array

MWJavaObjectRef, a special subclass of MWArray, can be used to create a MATLAB
array that references Java objects. For detailed usage information on this class,
constructor, and associated methods, see the MWJavaObjectRef page in the Javadoc or
search for MWJavaObjectRef in the MATLAB Help browser Search field.

You can find the Javadoc at matlabroot/help/javabuilder/MWArrayAPI in your
product installation.

Wrap and Pass Objects to MATLAB

You can create a MATLAB code wrapper around Java objects using MWJavaObjectRef.
Using this technique, you can pass objects by reference to MATLAB functions, clone
a Java object inside a generated package, as well as perform other object marshaling
specific to the MATLAB Compiler SDK product. The examples in this section present
some common use cases.

Passing a Java Object into a MATLAB Compiler SDK Java Method

To pass an object into a MATLAB Compiler SDK Java method:

1 Use MWJavaObjectRef to wrap your object.
2 Pass your object to a MATLAB function. For example:

 /* Create an object */

 java.util.Hashtable<String,Integer> hash =

 new java.util.Hashtable<String,Integer>();

 hash.put("One", 1);

 hash.put("Two", 2);

 System.out.println("hash: ");

 System.out.println(hash.toString());

 /* Create a MWJavaObjectRef to wrap this object */

2-25

2 Programming

 origRef = new MWJavaObjectRef(hash);

 /* Pass it to a MATLAB function that lists its methods, etc */

 result = theComponent.displayObj(1, origRef);

 MWArray.disposeArray(origRef);

Cloning an Object

You can also use MWJavaObjectRef to clone an object. Continuing with the example in
“Passing a Java Object into a MATLAB Compiler SDK Java Method” on page 2-25, do
the following:

1 Add to the original hash.
2 Clone the object.
3 (Optional) Continue to add items to each copy. For example:

 origRef = new MWJavaObjectRef(hash);

 System.out.println("hash:");

 System.out.println(hash.toString());

 result = theComponent.addToHash(1, origRef);

 outputRef = (MWJavaObjectRef)result[0];

 /* We can typecheck that the reference contains a */

 /* Hashtable but not <String,Integer>; */

 /* this can cause issues if we get a Hashtable<wrong,wrong>. */

 java.util.Hashtable<String, Integer> outHash =

 (java.util.Hashtable<String,Integer>)(outputRef.get());

 /* We've added items to the original hash, cloned it, */

 /* then added items to each copy */

 System.out.println("hash:");

 System.out.println(hash.toString());

 System.out.println("outHash:");

 System.out.println(outHash.toString());

For reference, here is the source code for addToHash.m:

addToHash.m

function h2 = addToHash(h)

% Validate input

if ~isa(h,'java.util.Hashtable')

 error('addToHash:IncorrectType', ...

 'addToHash expects a java.util.Hashtable');

end

% Add an item

h.put('From MATLAB',12);

% Clone the Hashtable and add items to both resulting objects

2-26

 Pass Java Objects by Reference

h2 = h.clone();

h.put('Orig',20);

h2.put('Clone',21);

Passing a Date into a Method and Getting a Date from a Method

In addition to passing in created objects, as in “Passing a Java Object into a MATLAB
Compiler SDK Java Method” on page 2-25, you can also use MWJavaObjectRef to
pass in Java utility objects such as java.util.date. To do so, perform the following
steps:

1 Get the current date and time using the Java object java.util.date.
2 Create an instance of MWJavaObjectRef in which to wrap the Java object.
3 Pass it to a MATLAB function that performs further processing, such as

nextWeek.m. For example:
 /* Get the current date and time */

 java.util.Date nowDate = new java.util.Date();

 System.out.println("nowDate:");

 System.out.println(nowDate.toString());

 /* Create a MWJavaObjectRef to wrap this object */

 origRef = new MWJavaObjectRef(nowDate);

 /* Pass it to a MATLAB function that calculates one week */

 /* in the future */

 result = theComponent.nextWeek(1, origRef);

 outputRef = (MWJavaObjectRef)result[0];

 java.util.Date nextWeekDate =

 (java.util.Date)outputRef.get();

 System.out.println("nextWeekDate:");

 System.out.println(nextWeekDate.toString());

For reference, here is the source code for nextWeek.m:

nextWeek.m

function nextWeekDate = nextWeek(nowDate)

% Validate input

if ~isa(nowDate,'java.util.Date')

 error('nextWeekDate:IncorrectType', ...

 'nextWeekDate expects a java.util.Date');

end

% Use java.util.Calendar to calculate one week later

% than the supplied

% java.util.Date

cal = java.util.Calendar.getInstance();

cal.setTime(nowDate);

cal.add(java.util.Calendar.DAY_OF_MONTH, 7);

2-27

2 Programming

nextWeekDate = cal.getTime();

Returning Java Objects Using unwrapJavaObjectRefs

If you want actual Java objects returned from a method (without the MATLAB
wrappering), use unwrapJavaObjectRefs.

This method recursively connects a single MWJavaObjectRef or a multidimensional
array of MWJavaObjectRef objects to a reference or array of references.

The following code snippets show two examples of calling unwrapJavaObjectRefs:

Returning a Single Reference or Reference to an Array of Objects with unwrapJavaObjectRefs

 Hashtable<String,Integer> myHash =

 new Hashtable<String,Integer>();

 myHash.put("a", new Integer(3));

 myHash.put("b", new Integer(5));

 MWJavaObjectRef A =

 new MWJavaObjectRef(new Integer(12));

 System.out.println("A referenced the object: "

 + MWJavaObjectRef.unwrapJavaObjectRefs(A));

 MWJavaObjectRef B = new MWJavaObjectRef(myHash);

 Object bObj = (Object)B;

 System.out.println("B referenced the object: "

 + MWJavaObjectRef.unwrapJavaObjectRefs(bObj))

Produces the following output:

 A referenced the object: 12

 B referenced the object: {b=5, a=3}

Returning an Array of References with unwrapJavaObjectRefs

 MWJavaObjectRef A =

 new MWJavaObjectRef(new Integer(12));

 MWJavaObjectRef B =

 new MWJavaObjectRef(new Integer(104));

 Object[] refArr = new Object[2];

 refArr[0] = A;

 refArr[1] = B;

 Object[] objArr =

 MWJavaObjectRef.unwrapJavaObjectRefs(refArr);

 System.out.println("refArr referenced the objects: " +

 objArr[0] + " and " + objArr[1]);

2-28

 Pass Java Objects by Reference

Produces the following output:

 refArr referenced the objects: 12 and 104

Optimization Example Using MWJavaObjectRef

For a full example of how to use MWJavaObjectRef to create a reference to a Java object
and pass it to a method, see “Pass Java Objects to MATLAB” on page 5-28.

2-29

2 Programming

Use Multiple Packages in Single Application
In this section...

“Work with MATLAB Function Handles” on page 2-30
“Work with Objects” on page 2-32

When developing applications that use multiple MATLAB packages, consider that the
following cannot be shared between assemblies:

• MATLAB function handles
• MATLAB figure handles
• MATLAB objects
• C, Java, and .NET objects
• Executable data stored in cell arrays and structures

Work with MATLAB Function Handles

MATLAB function handles can be passed between an application and the MATLAB
Runtime instance from which it originated. However, a MATLAB function handle
cannot be passed into a MATLAB Runtime instance other than the one in which it
originated. For example, suppose you had two MATLAB functions, get_plot_handle
and plot_xy, and plot_xy used the function handle created by get_plot_handle.

% Saved as get_plot_handle.m

function h = get_plot_handle(lnSpec, lnWidth, mkEdge, mkFace, mkSize)

h = @draw_plot;

 function draw_plot(x, y)

 plot(x, y, lnSpec, ...

 'LineWidth', lnWidth, ...

 'MarkerEdgeColor', mkEdge, ...

 'MarkerFaceColor', mkFace, ...

 'MarkerSize', mkSize)

 end

end

% Saved as plot_xy.m

function plot_xy(x, y, h)

h(x, y);

end

If you compiled them into two packages, the call to plot_xy would throw an exception.

2-30

 Use Multiple Packages in Single Application

import com.mathworks.toolbox.javabuilder.*;

import get_plot_handle.*;

import plot_xy.*;

class plottter

{

 public static void main(String[] args)

 {

 MWArray h = null;

 try

 {

 plotter_handle = new get_plot_handle.Class1();

 plot = new plot_xy.Class1();

 h = plotter_handle.get_plot_handle(1,'--rs',2.0,'k','g',10);

 double[] x = {1,2,3,4,5,6,7,8,9};

 double[] y = {2,6,12,20,30,42,56,72,90};

 plot.plot_xy(x, y, h);

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 }

 finally

 {

 MWArray.disposeArray(h);

 plot.dispose();

 plotter_handle.dispose();

 }

 }

}

The correct way to handle the situation is to compile both functions into a single package.

import com.mathworks.toolbox.javabuilder.*;

import plot_functions.*;

class plotter

{

 public static void main(String[] args)

 {

 MWArray h = null;

2-31

2 Programming

 try

 {

 plot_funcs = new Class1();

 h = plot_funcs.get_plot_handle(1, '--rs', 2.0, 'k', 'g', 10);

 double[] x = {1,2,3,4,5,6,7,8,9};

 double[] y = {2,6,12,20,30,42,56,72,90};

 plot_funcs.plot_xy(x, y, h);

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 }

 finally

 {

 MWArray.disposeArray(h);

 plot_funcs.dispose();

 }

 }

}

Note: You could also handle this situation by using a singleton MATLAB Runtime.

Work with Objects

MATLAB Compiler SDK enables you to return the following types of objects from the
MATLAB Runtime to your application code:

• MATLAB
• C++
• .NET
• Java

However, you cannot pass an object created in one MATLAB Runtime instance into a
different MATLAB Runtime instance. This conflict can happen when a function that
returns an object and a function that manipulates that object are compiled into different
packages.

For example, you develop two functions. The first creates a bank account for a customer
based on some set of conditions. The second transfers funds between two accounts.

2-32

 Use Multiple Packages in Single Application

% Saved as account.m

classdef account < handle

 properties

 name

 end

 properties (SetAccess = protected)

 balance = 0

 number

 end

 methods

 function obj = account(name)

 obj.name = name;

 obj.number = round(rand * 1000);

 end

 function deposit(obj, deposit)

 new_bal = obj.balance + deposit;

 obj.balance = new_bal;

 end

 function withdraw(obj, withdrawl)

 new_bal = obj.balance - withdrawl;

 obj.balance = new_bal;

 end

 end

end

% Saved as open_acct .m

function acct = open_acct(name, open_bal)

 acct = account(name);

 if open_bal > 0

 acct.deposit(open_bal);

 end

end

% Saved as transfer.m

function transfer(source, dest, amount)

2-33

2 Programming

 if (source.balance > amount)

 dest.deposit(amount);

 source.withdraw(amount);

 end

end

If you compiled open_acct.m and transfer.m into separate packages, you could not
transfer funds using accounts created with open_acct. The call to transfer throws an
exception. One way of resolving this is to compile both functions into a single package.
You could also refactor the application such that you are not passing MATLAB objects to
the functions.

Note: You could also handle this situation by using a singleton MATLAB Runtime.

More About
• “Share MATLAB Runtime Instances” on page 10-12

2-34

 Error Handling

Error Handling

In this section...

“Error Overview” on page 2-35
“Handling Checked Exceptions” on page 2-35
“Handling Unchecked Exceptions” on page 2-38
“Alternatives to Using of System.exit” on page 2-40

Error Overview

Errors that occur during execution of a MATLAB function or during data conversion are
signaled by a standard Java exception. This includes MATLAB run-time errors as well as
errors in your MATLAB code.

Handling Checked Exceptions

Checked exceptions must be declared as thrown by a method using the
throws clause. MATLAB Compiler SDK Java packages support the
com.mathworks.toolbox.javabuilder exception.MWException. This exception class
inherits from java.lang.Exception and is thrown by every MATLAB Compiler SDK
generated Java method to signal that an error has occurred during the call. All normal
MATLAB run-time errors, as well as user-created errors (e.g., a calling error in your
MATLAB code) are manifested as MWExceptions.

The Java interface to each MATLAB function declares itself as throwing an
MWException using the throws clause. For example, the myprimes MATLAB function
shown previously has the following interface:

/* mlx interface – List version */

public void myprimes(List lhs, List rhs) throws MWException

{

 (implementation omitted)

}

/* mlx interface – Array version */

public void myprimes(Object[] lhs, Object[] rhs)

 throws MWException

{

 (implementation omitted)

2-35

2 Programming

 }

/* Standard interface – no inputs*/

public Object[] myprimes(int nargout) throws MWException

 {

 (implementation omitted)

 }

/* Standard interface – one input*/

public Object[] myprimes(int nargout, Object n)

 throws MWException

 {

 (implementation omitted)

 }

Any method that calls myprimes must do one of two things:

• Catch and handle the MWException.
• Allow the calling program to catch it.

The following two sections provide examples of each.

Handling an Exception in the Called Function

The getprimes example shown here uses the first of these methods. This method
handles the exception itself, and does not need to include a throws clause at the start.

public double[] getprimes(int n)

{

 myclass cls = null;

 Object[] y = null;

 try

 {

 cls = new myclass();

 y = cls.myprimes(1, new Double((double)n));

 return (double[])((MWArray)y[0]).getData();

 }

 /* Catches the exception thrown by myprimes */

 catch (MWException e)

 {

 System.out.println("Exception: " + e.toString());

 return new double[0];

 }

2-36

 Error Handling

 finally

 {

 MWArray.disposeArray(y);

 if (cls != null)

 cls.dispose();

 }

}

Note that in this case, it is the programmer's responsibility to return something
reasonable from the method in case of an error.

The finally clause in the example contains code that executes after all other processing
in the try block is executed. This code executes whether or not an exception occurs or a
control flow statement like return or break is executed. It is common practice to include
any cleanup code that must execute before leaving the function in a finally block.
The documentation examples use finally blocks in all the code samples to free native
resources that were allocated in the method.

For more information on freeing resources, see “Manage MATLAB Resources” on page
2-41.

Handling an Exception in the Calling Function

In this next example, the method that calls myprimes declares that it throws an
MWException:

public double[] getprimes(int n) throws MWException

{

 myclass cls = null;

 Object[] y = null;

 try

 {

 cls = new myclass();

 y = cls.myprimes(1, new Double((double)n));

 return (double[])((MWArray)y[0]).getData();

 }

 finally

 {

 MWArray.disposeArray(y);

 if (cls != null)

 cls.dispose();

 }

2-37

2 Programming

}

Handling Unchecked Exceptions

Several types of unchecked exceptions can also occur during the course of execution.
Unchecked exceptions are Java exceptions that do not need to be explicitly declared with
a throws clause. The MWArray API classes all throw unchecked exceptions.

All unchecked exceptions thrown by MWArray and its subclasses are subclasses of
java.lang.RuntimeException. The following exceptions can be thrown by MWArray:

• java.lang.RuntimeException

• java.lang.ArrayStoreException

• java.lang.NullPointerException

• java.lang.IndexOutOfBoundsException

• java.lang.NegativeArraySizeException

This list represents the most likely exceptions. Others might be added in the future.

Catching General Exceptions

You can easily rewrite the getprimes example to catch any exception that can occur
during the method call and data conversion. Just change the catch clause to catch a
general java.lang.Exception.

public double[] getprimes(int n)

{

 myclass cls = null;

 Object[] y = null;

 try

 {

 cls = new myclass();

 y = cls.myprimes(1, new Double((double)n));

 return (double[])((MWArray)y[0]).getData();

 }

 /* Catches the exception thrown by anyone */

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

2-38

 Error Handling

 return new double[0];

 }

 finally

 {

 MWArray.disposeArray(y);

 if (cls != null)

 cls.dispose();

 }

}

Catching Multiple Exception Types

This second, and more general, variant of this example differentiates between an
exception generated in a compiled method call and all other exception types by
introducing two catch clauses as follows:

public double[] getprimes(int n)

{

 myclass cls = null;

 Object[] y = null;

 try

 {

 cls = new myclass();

 y = cls.myprimes(1, new Double((double)n));

 return (double[])((MWArray)y[0]).getData();

 }

 /* Catches the exception thrown by myprimes */

 catch (MWException e)

 {

 System.out.println("Exception in MATLAB call: " +

 e.toString());

 return new double[0];

 }

 /* Catches all other exceptions */

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 return new double[0];

 }

 finally

2-39

2 Programming

 {

 MWArray.disposeArray(y);

 if (cls != null)

 cls.dispose();

 }

}

The order of the catch clauses here is important. Because MWException is a subclass of
Exception, the catch clause for MWException must occur before the catch clause for
Exception. If the order is reversed, the MWException catch clause will never execute.

Alternatives to Using of System.exit

Any Java application that uses a class generated using MATLAB Compiler SDK should
avoid any direct or indirect calls to System.exit.

Any direct or indirect call to System.exit will result in the JVM shutting down in an
abnormal fashion. This may result in system deadlocks.

Using System.exit also causes the java process to exit unpredictably.

Java programs using Swing components are most likely to invoke System.exit. Here
are a few ways to avoid it:

• Use public interface WindowConstants.DISPOSE_ON_CLOSE method as an
alternative to WindowConstants.EXIT_ON_CLOSE as input to the JFrame class
setDefaultCloseOperation method.

• If you want to provide an Exit button in your GUI that terminates your application,
instead of calling System.exit in the ActionListener for the button, call the
dispose method on JFrame.

2-40

 Manage MATLAB Resources

Manage MATLAB Resources

In this section...

“Why MATLAB Resources Need to be Managed” on page 2-41
“Creating MATLAB Objects” on page 2-41
“Disposing of MATLAB Objects” on page 2-42

Why MATLAB Resources Need to be Managed

MATLAB Compiler SDK uses a Java Native Interface (JNI) wrapper connecting your
Java application to the C++ MATLAB Runtime. As a result, most of the resources
consumed by the MATLAB Compiler SDK portions of your Java application are created
by the MATLAB Runtime. Resource created by the MATLAB Runtime are not visible to
the JVM. The JVM’s garbage collector cannot effectively manage resources that it cannot
see.

All of the MATLAB Compiler SDK Java classes have hooks that free the MATLAB
resources when the JVM garbage collects the wrapper objects. However, the JVM’s
garbage collection is unreliable because the JVM only sees the small wrapper object. The
garbage collector can decide that it is not worth wasting CPU cycles to actually delete the
wrapper object. Until the Java wrapper object is deleted, the resources allocated in the
MATLAB Runtime are also not deleted. This behavior can result in conditions that look
like memory leaks and rapidly consume resources.

To avoid this situation:

• Never create anonymous MATLAB objects.
• Always dispose of MATLAB objects using their dispose() method.

Creating MATLAB Objects

All of the MATLAB objects supported by MATLAB Compiler SDK have standard Java
constructors as described in the com.mathworks.toolbox.javabuilder Javadoc.

When creating MATLAB objects, always assign them names. To create a 5x5 cell array:

MWCellArray myCA = new MWCellArray(5, 5);

2-41

2 Programming

The Java object myCA is a wrapper that points to a 5x5 mxCellArray object in the
MATLAB Runtime. myCA can be added to other MATLAB arrays or manipulated in
your Java application. When you are finished with myCA, you can clean up the 5x5
mxCellArray using the object’s dispose() method.

The semantics of the API allows you create anonymous MATLAB objects and store them
in named MATLAB objects, but you should never do this in practice. You have no way
to manage the MATLAB resources created by the anonymous MATLAB object.

The following code creates a MATLAB array, data, and populates it with an anonymous
MATLAB object:

MWStructArray data = new MWStructArray(1, KMAX, FIELDS);

data.set(FIELDS[0], k + 1, new MWNumericArray(k * 1.13));

Two MATLAB objects are created. Both objects have a Java wrapper and a MATLAB
array object in the MATLAB Runtime. When you dispose of data, all of the resources for
it are cleaned up. However, the anonymous object created by new MWNumericArray(k
* 1.13) is just marked for deletion by the JVM. However, because the Java wrapper
consumes a tiny amount of space, the garbage collector is likely to leave it around.
Because the JVM never cleans up the wrapper object, the MATLAB Runtime never
cleans up the resources it has allocated.

The MATLAB object’s set() methods accept native Java types:

MWStructArray data = new MWStructArray(1, KMAX, FIELDS);

data.set(FIELDS[0], k + 1, k * 1.13);

In this instance, only one MATLAB object is created. When its dispose() method is
called all of the resources are cleaned up.

Disposing of MATLAB Objects

There are two ways of cleaning up MATLAB objects:

• the object’s dispose() method
• the static MWArray.disposeArray() method

Both methods release all of the resources associated with the MATLAB object. The Java
wrapper object is deleted. If there are no other references to the MATLAB Runtime
mxArray object, it is also deleted.

2-42

 Manage MATLAB Resources

The following code disposes of a MATLAB object using its dispose() method.

MWCellArray myCA = new MWCellArray(5, 5);

...

myCA.dispose();

The following code disposes of a MATLAB object using the MWArray.disposeArray()
method.

MWCellArray myCA = new MWCellArray(5, 5);

...

MWArray.disposeArray(myCA);

2-43

2 Programming

MATLAB Runtime User Data Interface

This feature provides a lightweight interface for accessing MATLAB Runtime data.
It allows data to be shared between a MATLAB Runtime instance, the MATLAB code
running on that MATLAB Runtime, and the wrapper code that created the MATLAB
Runtime. Through calls to the MATLAB Runtime User Data interface API, you
access MATLAB Runtime data through creation of a per-instance associative array of
mxArrays, consisting of a mapping from string keys to mxArray values. Reasons for
doing this include, but are not limited to:

• You need to supply run-time information to a client running an application created
with the Parallel Computing Toolbox™. Profile information may be supplied on a
per-execution basis. For example, two instances of the same application may run
simultaneously with different profiles.

• You want to initialize the MATLAB Runtime with constant values that can be
accessed by all your MATLAB applications

• You want to set up a global workspace — a global variable or variables that MATLAB
and your client can access

• You want to store the state of any variable or group of variables

MATLAB Compiler SDK software supports per-run-time instance state access through
an object-oriented API. Access to a per-run-time instance state is optional, rather
than on by default. You can access this state by adding setmcruserdata.m and
getmcruserdata.m to your deployment project or by specifying them on the command
line. Alternatively, you use a helper function to call these methods as demonstrated in
“Supply Run-Time Profile Information for Parallel Computing Toolbox Applications” on
page 2-45.

For more information, see “Using the MATLAB Runtime User Data Interface”

2-44

 Supply Run-Time Profile Information for Parallel Computing Toolbox Applications

Supply Run-Time Profile Information for Parallel Computing
Toolbox Applications

Following is a complete example of how you can use the MATLAB Runtime User
Data Interface as a mechanism to specify a profile for Parallel Computing Toolbox
applications.

Step 1: Write Your Parallel Computing Toolbox Code

1 Compile sample_pct.m in MATLAB.

This example code uses the cluster defined in the default profile.

The output assumes that the default profile is local.

function speedup = sample_pct (n)

warning off all;

tic

if(ischar(n))

 n=str2double(n);

end

for ii = 1:n

 (cov(sin(magic(n)+rand(n,n))));

end

time1 =toc;

parpool;

tic

parfor ii = 1:n

 (cov(sin(magic(n)+rand(n,n))));

end

time2 =toc;

disp(['Normal loop times: ' num2str(time1) ...

 ',parallel loop time: ' num2str(time2)]);

disp(['parallel speedup: ' num2str(1/(time2/time1)) ...

 ' times faster than normal']);

delete(gcp);

disp('done');

speedup = (time1/time2);

2 Run the code as follows after changing the default profile to local, if needed.

a = sample_pct(200)

2-45

2 Programming

3 Verify that you get the following results:

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Normal loop times: 0.7587,parallel loop time: 2.9988

parallel speedup: 0.253 times faster than normal

Parallel pool using the 'local' profile is shutting down.

done

a =

 0.2530

Step 2: Set the Parallel Computing Toolbox Profile

In order to compile MATLAB code to a Java package and utilize the Parallel Computing
Toolbox, the mcruserdata must be set directly from MATLAB. There is no Java API
available to access the MCRUserdata as there is for C and C++ applications built with
MATLAB Compiler SDK.

To set the mcruserdata from MATLAB, create an init function in your Java class.
This is a separate MATLAB function that uses setmcruserdata to set the Parallel
Computing Toolbox profile once. You then call your other functions to utilize the Parallel
Computing Toolbox functions.

Create the following init function:

function init_sample_pct

% Set the Parallel Profile:

if(isdeployed)

 [profile, profpath] = uigetfile('*.settings');

 % let the USER select file

 setmcruserdata('ParallelProfile', fullfile(profpath, profile));

end

Tip: If you need to change your profile in the application, use the
parallel.importProfile and parallel.defaultClusterProfile methods. See
the Parallel Computing Toolbox documentation for more information.

2-46

 Supply Run-Time Profile Information for Parallel Computing Toolbox Applications

Step 3: Compile Your Function with the Library Compiler App or the
Command Line Compiler

You can compile your function from the command line by entering the following:
mcc -S -W 'java:parallelComponent,PctClass' init_sample_pct.m sample_pct.m

Alternately, you can use the Library Compiler app by following the steps in “Compile
Java Packages with Library Compiler App”.

Project Name parallelComponent

Class Name PctClass

File to Compile pct_sample.m and init_pct_sample.m

When the compilation finishes, a new folder with the same name as the project is
created. This folder contains the following subfolders:

• for_redistribution

• for_redistribution_files_only

• for_testing

Note: If you are using the GPU feature of Parallel Computing Toolbox, you need to
manually add the PTX and CU files.

If you are using the Library Compiler app, click Add files/directories on the Build tab.

If you are using the mcc command, use the -a option.

Step 4: Write the Java Driver Application

Write the following Java driver application to use the generated package, as follows,
using a Java-compatible IDE such as Eclipse™:

import com.mathworks.toolbox.javabuilder.*;

import parallelComponent.*;

public class JavaParallelClass

{

 public static void main(String[] args)

2-47

2 Programming

 {

 MWArray A = null;

 PctClass C = null;

 Object[] B = null;

 try

 {

 C = new PctClass();

 /* Set up the runtime with Parallel Data */

 C.init_sample_pct();

 A = new MWNumericArray(200);

 B = C.sample_pct(1, A);

 System.out.println(" The Speed Up was:" + B[0]);

 }

 catch (Exception e)

 {

 System.out.println("The error is " + e.toString());

 }

 finally

 {

 MWArray.disposeArray(A);

 C.dispose();

 }

 }

}

The output is as follows:

(UIGETFILE brings up the window to select the MAT file)

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.

Normal loop times: 0.7587,parallel loop time: 2.9988

parallel speedup: 0.253 times faster than normal

Parallel pool using the 'local' profile is shutting down.

done

The Speed Up was:2.1198

Compiling and Running the Application Without Using an IDE

If you are not using an IDE, compile the application using command-line Java, as follows:

Note: Enter these commands on a single line, using the semi-colon as a delimiter.

javac -classpath .;C:\pct_compile\javaApp\parallelComponent.jar;

 matlabroot/toolbox/javabuilder/jar/javabuilder.jar JavaParallelClass.java

2-48

 Supply Run-Time Profile Information for Parallel Computing Toolbox Applications

Run the application from the command-line, as follows:

java -classpath .;C:\pct_compile\javaApp\parallelComponent.jar;

 matlabroot/toolbox/javabuilder/jar/javabuilder.jar JavaParallelClass

2-49

2 Programming

Dynamically Specify Options to the MATLAB Runtime

In this section...

“What Options Can You Specify?” on page 2-50
“Setting and Retrieving MATLAB Runtime Option Values Using MWApplication” on
page 2-50

What Options Can You Specify?

You can pass MATLAB Runtime options -nojvm, -nodisplay, and -logfile
to MATLAB Compiler SDK from the client application using two classes in
javabuilder.jar:

• MWApplication

• MWMCROption

Setting and Retrieving MATLAB Runtime Option Values Using
MWApplication

The MWApplication class provides several static methods to set MATLAB Runtime
option values and also to retrieve them. The following table lists static methods
supported by this class.

MWApplication Static Methods Purpose

MWApplication.initialize(MWMCROption...

options);

Passes MATLAB Runtime run-
time options (see “Specifying
Run-Time Options Using
MWMCROption” on page 2-51)

MWApplication.isMCRInitialized(); Returns true if the MATLAB
Runtime run-time is initialized;
otherwise returns false

MWApplication.isMCRJVMEnabled(); Returns true if the MATLAB
Runtime run-time is launched
with JVM; otherwise returns
false

MWApplication.isMCRNoDisplaySet(); Returns true if
MWMCROption.NODISPLAY

2-50

 Dynamically Specify Options to the MATLAB Runtime

MWApplication Static Methods Purpose

is used in
MWApplication.initialize

Note: false is always returned
on Windows systems since
the -nodisplay option is not
supported on Windows systems.

MWApplication.getMCRLogfileName(); Retrieves the name of the log file

Specifying Run-Time Options Using MWMCROption

MWApplication.initialize takes zero or more MWMCROptions.

Calling MWApplication.initialize() without any inputs launches the MATLAB
Runtime with the following default values.

You must call MWApplication.initialize() before performing any other processing.

These options are all write-once, read-only properties.

MATLAB Runtime Run-Time Option Default Values

-nojvm false

-logfile null

-nodisplay false

Note: If there are no MATLAB Runtime options being passed, you do not need to
use MWApplication.initialize since initializing a generated class initializes the
MATLAB Runtime with default options.

Use the following static members of MWMCROption to represent the MATLAB Runtime
options you want to modify.

MWMCROption Static
Members

Purpose

MWMCROption.NOJVM Launches the MATLAB Runtime without a JVM.
When this option is used, the JVM launched by the

2-51

2 Programming

MWMCROption Static
Members

Purpose

client application is unaffected. The value of this option
determines whether or not the MATLAB Runtime should
attach itself to the JVM launched by the client application.

MWMCROption.NODISPLAY Launches the MATLAB Runtime without display
functionality.

MWMCROption.logFile("logfile.dat")Allows you to specify a log file name (must be passed with
a log file name).

Passing and Retrieving MATLAB Runtime Option Values from a Java Application

Following is an example of how MATLAB Runtime option values are passed and
retrieved from a client-side Java application:

MWApplication.initialize(MWMCROption.NOJVM,

 MWMCROption.logFile("logfile.dat"),MWMCROption.NODISPLAY);

System.out.println(MWApplication.getMCRLogfileName());

System.out.println(MWApplication.isMCRInitialized());

System.out.println(MWApplication.isMCRJVMEnabled());

System.out.println(MWApplication.isMCRNoDisplaySet()); //UNIX

myclass cls = new myclass();

cls.hello();

2-52

 Data Conversion Between Java and MATLAB

Data Conversion Between Java and MATLAB

In this section...

“Overview” on page 2-53
“Call MWArray Methods” on page 2-53
“Create Buffered Images from a MATLAB Array” on page 2-54

Overview

The call signature for a method that encapsulates a MATLAB function uses one of the
MATLAB data conversion classes to pass arguments and return output. When you call
any such method, all input arguments not derived from one of the MWArray classes
are converted by the compiler to the correct MWArray type before being passed to the
MATLAB method.

For example, consider the following Java statement:

result = theFourier.plotfft(3, data, new Double(interval));

The third argument is of type java.lang.Double, which converts to a MATLAB 1-by-1
double array.

See “Rules for Data Conversion Between Java and MATLAB” on page 10-4 for a
complete list of rules to convert between Java and MATLAB Compiler SDK data types.

Call MWArray Methods

The conversion rules apply not only when calling your own methods, but also when
calling constructors and factory methods belonging to the MWArray classes. For example,
the following code calls the constructor for the MWNumericArray class with a Java
double input. The MATLAB Compiler SDK product converts the Java double input to
an instance of MWNumericArray having a ClassID property of MWClassID.DOUBLE.
This is the equivalent of a MATLAB 1-by-1 double array.

double Adata = 24;

MWNumericArray A = new MWNumericArray(Adata);

System.out.println("Array A is of type " + A.classID());

When you run this example, the results are as follows:

2-53

2 Programming

Array A is of type double

Specifying the Type

To specify the MATLAB to Java type conversion, you supply a specific data type in the
constructor. The MATLAB Compiler SDK product converts to the specified type rather
than following the default conversion rules.

The following code specifies that A should be constructed as a MATLAB 1-by-1 16-bit
integer array:

double Adata = 24;

MWNumericArray A = new MWNumericArray(Adata, MWClassID.INT16);

Create Buffered Images from a MATLAB Array

Use the renderArrayData method to:

• Create a buffered image from data in a given MATLAB array.
• Verify the array is of three dimensions (height, width, and color component).
• Verify the color component order is red, green, and blue.

Search on renderArrayData in the Javadoc for information on input parameters,
return values, exceptions thrown, and examples. The Javadoc is located at
matlabroot/help/javabuilder/MWArrayAPI.

2-54

 Set Java Properties

Set Java Properties

In this section...

“How to Set Java System Properties” on page 2-55
“Ensure a Consistent GUI Appearance” on page 2-55

How to Set Java System Properties

Set Java system properties in one of two ways:

• In the Java statement. Use the syntax: java -Dpropertyname=value, where
propertyname is the name of the Java system property you want to set and value is
the value to which you want the property set.

• In the Java code. Insert the following statement in your Java code near the top of the
main function, before you initialize any Java classes:

System.setProperty(key,value)

key is the name of the Java system property you want to set, and value is the value
to which you want the property set.

Ensure a Consistent GUI Appearance

After developing your initial GUI using the MATLAB Compiler SDK product, subsequent
GUIs that you develop may inherit properties of the MATLAB GUI, rather than
properties of your initial design. To preserve your original look and feel, set the
mathworks.DisableSetLookAndFeel Java system property to true.

Setting DisableSetLookAndFeel

The following are examples of how to set mathworks.DisableSetLookAndFeel using
the techniques in “How to Set Java System Properties” on page 2-55:

• In the java statement:

java -classpath X:/mypath/tomy/javabuilder.jar -

Dmathworks.DisableSetLookAndFeel=true

• In the Java code:

Class A {

2-55

2 Programming

main () {

 System.getProperties().set("mathworks.DisableSetLookAndFeel","true");

 foo f = newFoo();

 }

 }

2-56

 Execution of Applications that Create Figures

Execution of Applications that Create Figures

The following example illustrates using waitForFigures from a Java application. The
example uses a Java class created by the MATLAB Compiler SDK product; the object
encapsulates MATLAB code that draws a simple plot.

1 Create a work folder for your source code. In this example, the folder is D:\work
\plotdemo.

2 In this folder, create the following MATLAB file:

drawplot.m

function drawplot()

 plot(1:10);

3 Use the compiler to create a Java package with the following properties:

Package name examples

Class name Plotter

4 Create a Java program in a file named runplot.java with the following code:

import com.mathworks.toolbox.javabuilder.*;

import examples.Plotter;

public class runplot

{

 public static void main(String[] args)

 {

 try

 {

 plotter p = new Plotter();

 try

 {

 p.drawplot();

 p.waitForFigures();

 }

 finally

 {

 p.dispose();

 }

 }

 catch (MWException e)

 {

2-57

2 Programming

 e.printStackTrace();

 }

 }

}

5 Compile the application with the javac command.

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note: To see what happens without the call to waitForFigures, comment out
the call, rebuild the application, and run it. In this case, the figure is drawn and is
immediately destroyed as the application exits.

2-58

 Ensuring Multi-Platform Portability

Ensuring Multi-Platform Portability

Compiled MATLAB code containing only MATLAB files are platform independent, as
are .jar files. These files can be used out of the box on any platform providing that the
platform has either MATLAB or the MATLAB Runtime installed.

However, if your compiled MATLAB code contains MEX-files, which are platform
dependent, do the following:

1 Compile your MEX-file once on each platform where you want to run your
application.

For example, if you are running on a Windows machine, and you want to also
run on the Linux 64-bit platform, compile my_mex.c twice (once on a PC to get
my_mex.mexw64 and then again on a Linux 64-bit machine to get my_mex.mexa64).

2 Compile the package on one platform using the mcc command, using the -a flag
to include the MEX-file compiled on the other platform(s). In the example above,
run mcc on Windows and include the -a flag to include my_mex.mexa64. In this
example, the mcc command would be:
mcc -W 'java:mycomp,myclass' my_matlab_file.m -a my_mex.mexa64

Note: In this example, it is not necessary to explicitly include my_mex.mexw64
(providing you are running on Windows). This example assumes that
my_mex.mexw64 and my_mex.mexa64 reside in the same folder.

For example, if you are running on a Windows machine and you want to ensure
portability of the generated package that invokes the yprimes.c file (from
matlabroot\extern\examples\mex) on the Linux 64-bit platform, execute the
following mcc command:

mcc -W 'java:mycomp,myclass' callyprime.m -a yprime.mexa64

where callyprime.m can be a simple MATLAB function as follows:

function callyprime

disp(yprime(1,1:4));

Ensure the yprime.mexa64 file is in the same folder as your Windows MEX-file.

Tip: If you are unsure if your JAR file contains MEX-files, do the following:

2-59

2 Programming

1 Run mcc with the -v option to list the names of the MEX-files.

2 Obtain appropriate versions of these files from the version of MATLAB installed on
your target operating system.

3 Include these versions in the archive by running mcc with the -a option.

Caution: Some toolbox functionality will not be deployable when compiled into a Java
package and run on a platform other than the one compiled on. This is because some
toolbox code includes data that may be platform specific. If this is the case, you can only
deploy the application to like platforms. For example, the Image Processing Toolbox
function IMHIST will fail if deployed cross-platform with an undefined function
error.

JAR files produced by MATLAB Compiler SDK are tested and qualified to run on
platforms supported by MATLAB. See the Platform Roadmap for MATLAB for more
information.

2-60

http://www.mathworks.com/support/sysreq/roadmap.html

 Deployable Archive Embedding and Extraction

Deployable Archive Embedding and Extraction

In this section...

“Overview” on page 2-61
“Use MWComponentOptions Class to Indicate Extraction Options” on page 2-61
“Use Environment Variables to Indicate Extraction Options” on page 2-63
“For More Information” on page 2-64

Overview

Deployable archive data is extracted from the JAR file with no separate deployable
archive or packageNamemcr folder needed on the target machine. This behavior is
helpful when storage space on a file system is limited.

If you don't want deployable archive data extracted by default, use either the
MWComponentOptions class, or use environment variables, to specify how deployable
archive data extraction and utilization is handled.

Use MWComponentOptions Class to Indicate Extraction Options

Selecting Options

Choose from the following CtfSource or ExtractLocation instantiation options to
customize how to manage deployable archive content with MWComponentOptions:

• CtfSource — This option specifies where the deployable archive may be found
for an extracted component. It defines a binary data stream comprised of the bits
of the deployable archive. The following values are objects of some type extending
MWCtfSource:

• MWCtfSource.NONE — Indicates that no deployable archive is to be extracted.
This implies that the extracted deployable archive data is already accessible
somewhere on your file system. This is a public, static, final instance of
MWCtfSource.

• MWCtfFileSource — Indicates that the deployable archive data resides within a
particular file location that you specify. This class takes a java.io.File object in
its constructor.

2-61

2 Programming

• MWCtfDirectorySource — Indicates a folder to be scanned when instantiating
the component: if a file with a .ctf suffix is found in the folder you supply, the
deployable archive bits are loaded from that file. This class takes a java.io.File
object in its constructor.

• MWCtfStreamSource — Allows deployable archive bits to be read and extracted
directly from a specified input stream. This class takes a java.io.InputStream
object in its constructor.

• ExtractLocation — This option specifies where the extracted deployable archive
content is to be located. Since the MATLAB Runtime requires all deployable archive
content be located somewhere on your file system, use the desired ExtractLocation
option, along with the component type information, to define a unique location. A
value for this option is an instance of the class MWCtfExtractLocation. An instance
of this class can be created by passing a java.io.File or java.lang.String into
the constructor to specify the file system location to be used or one of these predefined,
static final instances may be used:

• MWCtfExtractLocation.EXTRACT_TO_CACHE — Use to indicate that the
deployable archive content is to be placed in the MATLAB Runtime component
cache. This is the default setting for R2007a and forward.

• MWCtfExtractLocation.EXTRACT_TO_COMPONENT_DIR — Use when you want
to locate the JAR or .class files from which the component has been loaded. If
the location is found (e.g., it is on the file system), then the deployable archive data
is extracted into the same folder. This option most closely matches the behavior of
R2007a and previous releases.

Note: Deployable archives are extracted by default to
temp\user_name\mcrCachen.nn.

Setting Options

Use the following methods to get or set the location where the deployable archive may be
found for an extracted component:

• getCtfSource()

• setCtfSource()

Use the following methods to get or set the location where the extracted deployable
archive content is to be located:

2-62

 Deployable Archive Embedding and Extraction

• getExtractLocation()

• setExtractLocation()

Enabling MATLAB Runtime Component Cache, Utilizing Deployable Archive Content Already on Your
System

If you want to enable the MATLAB Runtime Component Cache for a generated Java
class utilizing deployable archive content already resident in your file system, instantiate
MWComponentOptions using the following statements:

MWComponentOptions options = new MWComponentOptions();

// set options for the class by calling setter methods

// on ‘options’

options.setCtfSource(MWCtfSource.NONE);

 options.setExtractLocation(

 new MWCtfExtractLocation(“C:\\readonlydir\\MyModel_mcr”));

// instantiate the class using the desired options

MyModel m = new MyModel(options);

Use Environment Variables to Indicate Extraction Options

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the deployable
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Does not apply

MCR_CACHE_VERBOSE When set to any value, this
variable prints logging details
about the component cache for
diagnostic reasons. This can
be very helpful if problems are
encountered during deployable
archive extraction.

Logging details are turned off by
default (for example, when this
variable has no value).

2-63

2 Programming

Environment Variable Purpose Notes

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this variable
is 32M (megabytes). This
may, however, be changed
after you have set the variable
the first time. Edit the file
.max_size, which resides in the
file designated by running the
mcrcachedir command, with
the desired cache size limit.

Overriding Default Behavior

To extract the deployable archive, compile using the -C option when calling mcc.

You can also implement this override by entering -C in the Settings editor of the
Library Compiler app.

You might want to use this option to troubleshoot problems with the deployable archive,
for example, as the log and diagnostic messages are much more visible.

For More Information

For more information about the deployable archive, see “Deployable Archive” (MATLAB
Compiler).

2-64

 Explore the Javadoc

Explore the Javadoc

The Javadoc can be browsed from matlabroot/help/javabuilder/MWArrayAPI in
your product installation and by entering the name of the class or method you want to
learn more about in the search field on the Index page.

Javadoc contains, among other information:

• Signatures that diagram method and class usage
• Parameters passed in, return values expected, and exceptions that can be thrown
• Examples demonstrating typical usage of the class or method

2-65

3

Distribute Integrated Java
Applications

• “Package Java Applications” on page 3-2
• “About the MATLAB Runtime” on page 3-3
• “Install and Configure the MATLAB Runtime” on page 3-5

3 Distribute Integrated Java Applications

Package Java Applications

1 Gather and package the following files for installation on end user computers:

• MATLAB Runtime installer

See “Install and Configure the MATLAB Runtime” on page 3-5.
• MATLAB generated Java package
• JAR files for the application

2 Include directions for installing the MATLAB Runtime.

See “Install and Configure the MATLAB Runtime” on page 3-5.
3 Include directions for adding the required JAR files to the Java CLASSPATH.

At a minimum, the CLASSPATH must include:

• mcrroot/toolbox/javabuilder/jar/javabuilder.jar

• MATLAB generated Java package
• JAR files for the application

3-2

 About the MATLAB Runtime

About the MATLAB Runtime

In this section...

“How is the MATLAB Runtime Different from MATLAB?” on page 3-3
“Performance Considerations and the MATLAB Runtime” on page 3-4

The MATLAB Runtime is a standalone set of shared libraries, MATLAB code, and other
files that enables the execution of MATLAB files on computers without an installed
version of MATLAB. Applications that use artifacts built with MATLAB Compiler SDK
require access to an appropriate version of the MATLAB Runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB
Runtime on their computers or know the location of a network-installed MATLAB
Runtime. The installers generated by the compiler apps may include the MATLAB
Runtime installer. If you compiled your artifact using mcc, you should direct your
end-users to download the MATLAB Runtime installer from the website http://
www.mathworks.com/products/compiler/mcr.

See “Install and Configure the MATLAB Runtime” on page 3-5 for more
information.

How is the MATLAB Runtime Different from MATLAB?

The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the

MATLAB functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the

version of the MATLAB Runtime associated with the version of MATLAB Compiler
SDK with which it was created. For example, if you compiled an application using
version 6.3 (R2016b) of MATLAB Compiler, users who do not have MATLAB installed
must have version 9.1 of the MATLAB Runtime installed. Use mcrversion to return
the version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be
changed. To change them, you must first customize them within MATLAB.

3-3

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

3 Distribute Integrated Java Applications

Performance Considerations and the MATLAB Runtime

MATLAB Compiler SDK was designed to work with a large range of applications that
use the MATLAB programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language,
including the Java programming language, starting a compiled application takes
approximately the same amount of time as starting MATLAB. The amount of resources
consumed by the MATLAB Runtime is necessary in order to retain the power and
functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are
threadsafe. This can impact performance.

3-4

 Install and Configure the MATLAB Runtime

Install and Configure the MATLAB Runtime

In this section...

“Download the MATLAB Runtime Installer from the Web” on page 3-5
“Install the MATLAB Runtime Interactively” on page 3-5
“Install the MATLAB Runtime Non-Interactively” on page 3-7
“Install the MATLAB Runtime without Administrator Rights” on page 3-9
“Multiple MATLAB Runtime Versions on Single Machine” on page 3-9
“MATLAB and MATLAB Runtime on Same Machine” on page 3-10
“Uninstall MATLAB Runtime” on page 3-11

Download the MATLAB Runtime Installer from the Web

Download the MATLAB® Runtime from the website at http://www.mathworks.com/
products/compiler/mcr.

Install the MATLAB Runtime Interactively

To install the MATLAB Runtime:

1 Unzip/Extract the archive containing the MATLAB Runtime installer.

Platform Steps

Windows Double-click the self-extracting MATLAB Runtime installer that
you downloaded from the web.

For example, an R2017a runtime will have the name
MCR_R2017a_win64_installer.exe. Double clicking the
installer extracts the necessary files and automatically starts
the installer.

Linux Unzip the MATLAB Runtime installer at the terminal using the
unzip command.

For example, if you are unzipping the R2017a MATLAB
Runtime installer, at the Terminal, type:

unzip MCR_R2017a_glnxa64_installer.zip

3-5

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

3 Distribute Integrated Java Applications

Platform Steps

Mac OS Unzip the MATLAB Runtime installer at the terminal using the
unzip command.

For example, if you are unzipping the R2017a MATLAB
Runtime installer, at the Terminal, type:

unzip MCR_R2017a_maci64_installer.dmg.zip

Note: The release part of the installer filename (_R2017a_) will change from one
release to the next.

2 Start the MATLAB Runtime installer.

Platform Steps

Windows Installer automatically starts after completing the previous
step.

Linux At the Terminal, type:

sudo ./install

Note: On Debian® based Linux distributions, you will need to
type:

gksudo ./install

Mac OS At the Terminal, type:

./install

Note: You may need to enter an administrator username and
password after you run ./install.

3 When the MATLAB Runtime installer starts, it displays a dialog box. Read the
information and then click Next to proceed with the installation.

4 Specify the folder in which you want to install the MATLAB Runtime in the Folder
Selection dialog box.

3-6

 Install and Configure the MATLAB Runtime

Note: On Windows systems, you can have multiple versions of the MATLAB
Runtime on your computer but only one installation for any particular version. If
you already have an existing installation, the MATLAB Runtime installer does not
display the Folder Selection dialog box because you can only overwrite the existing
installation in the same folder.

5 Confirm your choices and click Next.

The MATLAB Runtime installer starts copying files into the installation folder.
6 On Linux and Mac OS platforms, after copying files to your disk, the MATLAB

Runtime installer displays the Product Configuration Notes dialog box. This
dialog box contains information necessary for setting your path environment
variables. Copy the path information from this dialog box and then click Next.

7 Click Finish to exit the installer.

Install the MATLAB Runtime Non-Interactively

To install the MATLAB Runtime without having to interact with the installer dialog
boxes, use one of the MATLAB Runtime installer’s non-interactive modes:

• silent—the installer runs as a background task and does not display any dialog boxes
• automated—the installer displays the dialog boxes but does not wait for user

interaction

When run in silent or automated mode, the MATLAB Runtime installer uses default
values for installation options. You can override these defaults by using MATLAB
Runtime installer command-line options or an installer control file.

Note: When running in silent or automated mode, the installer overwrites the default
installation location.

Running the Installer in Silent Mode

To install the MATLAB Runtime in silent mode:

1 Extract the contents of the MATLAB Runtime installer file to a temporary folder,
called $temp in this documentation.

3-7

3 Distribute Integrated Java Applications

Note: On Windows systems, manually extract the contents of the installer file.
2 Run the MATLAB Runtime installer, specifying the -mode option and -

agreeToLicense yes on the command line.

Note: On most platforms, the installer is located at the root of the folder into which
the archive was extracted. On Windows 64, the installer is located in the archives
bin folder.

Platform Command

Windows setup -mode silent -

agreeToLicense yes

Linux ./install -mode silent -

agreeToLicense yes

Mac OS X ./install -mode silent -

agreeToLicense yes

Note: If you do not include the -agreeToLicense yes the installer will not install
the MATLAB Runtime.

3 View a log of the installation.

On Windows systems, the MATLAB Runtime installer creates a log file, named
mathworks_username.log, where username is your Windows log-in name, in the
location defined by your TEMP environment variable.

On Linux and Mac systems, the MATLAB Runtime installer displays the log
information at the command prompt, unless you redirect it to a file.

Customizing a Non-Interactive Installation

When run in one of the non-interactive modes, the installer will use the default values
unless told to do otherwise. Like the MATLAB installer, the MATLAB Runtime
installer accepts a number of command line options that modify the default installation
properties.

3-8

 Install and Configure the MATLAB Runtime

Option Description

-destinationFolder Specifies where the MATLAB Runtime will
be installed.

-outputFile Specifies where the installation log file is
written.

-automatedModeTimeout Specifies how long, in milliseconds, that
the dialog boxes are displayed when run in
automatic mode.

-inputFile Specifies an installer control file with the
values for all of the above options.

Note: The MATLAB Runtime installer archive includes an example installer control file
called installer_input.txt. This file contains all of the options available for a full
MATLAB installation. Only the options listed in this section are valid for the MATLAB
Runtime installer.

Install the MATLAB Runtime without Administrator Rights

To install the MATLAB Runtime as a user without administrator rights on Windows:

1 Use the MATLAB Runtime installer to install it on a Windows machine where you
have administrator rights.

2 Copy the folder where the MATLAB Runtime was installed to the machine without
administrator rights. You can compress the folder into zip file and distribute to
multiple users.

3 On the machine without administrator rights, add the mcr_root\runtime\arch
directory onto the user’s path environment variable.

Note: You don’t need administrator rights for adding directories to a user’s path
environment variable.

Multiple MATLAB Runtime Versions on Single Machine

MCRInstaller supports the installation of multiple versions of the MATLAB Runtime
on a target machine. This allows applications compiled with different versions of the
MATLAB Runtime to execute side by side on the same machine.

3-9

3 Distribute Integrated Java Applications

If you do not want multiple MATLAB Runtime versions on the target machine, you
can remove the unwanted ones. On Windows, run Add or Remove Programs from
the Control Panel to remove any of the previous versions. On UNIX, you manually
delete the unwanted MATLAB Runtime. You can remove unwanted versions before or
after installation of a more recent version of the MATLAB Runtime, as versions can be
installed or removed in any order.

MATLAB and MATLAB Runtime on Same Machine

You do not need to install MATLAB Runtime on your machine if your machine has
MATLAB installed. The version of MATLAB should be the same as the version of
MATLAB that was used to create the compiled MATLAB code. Also, to act as the
MATLAB Runtime replacement, the MATLAB installation must include MATLAB
Compiler.

You can, however, install the MATLAB Runtime for debugging purposes.

Modifying the Path

If you install MATLAB Runtime on a machine that already has MATLAB on it, you must
adjust the library path according to your needs.

• Windows

To run deployed MATLAB code against MATLAB Runtime install,
mcr_root\ver\runtime\win64 must appear on your system path before
matlabroot\runtime\win64.

If mcr_root\ver\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB Runtime install area.

If matlabroot\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB installation area.

• UNIX

To run deployed MATLAB code against MATLAB Runtime on Linux, Linux x86-64, or
the <mcr_root>/runtime/<arch> folder must appear on your LD_LIBRARY_PATH
before matlabroot/runtime/<arch>.

To run deployed MATLAB code on Mac OS X, the <mcr_root>/runtime folder must
appear on your DYLD_LIBRARY_PATH before matlabroot/runtime/<arch>.

3-10

 Install and Configure the MATLAB Runtime

To run MATLAB on Mac OS X or Intel® Mac, matlabroot/runtime/<arch> must
appear on your DYLD_LIBRARY_PATH before the <mcr_root>/bin folder.

Uninstall MATLAB Runtime

The method you use to uninstall MATLAB Runtime from your computer varies
depending on the type of computer.

Windows

1 Start the uninstaller.

From the Windows Start menu, search for the Add or Remove Programs control
panel, and double-click MATLAB Runtime in the list.

You can also start the MATLAB Runtime uninstaller from the
mcr_root\uninstall\bin\arch folder, where mcr_root is your MATLAB
Runtime installation folder and arch is an architecture-specific folder, such as
win64.

2 Select the MATLAB Runtime from the list of products in the Uninstall Products
dialog box.

3 Click Next.
4 Click Finish.

Linux

1 Exit the application.
2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB installation folder.

Mac

1 Exit the application.
2 Navigate to your MATLAB Runtime installation folder. For example, the installation

folder might be named MATLAB_Compiler_Runtime.app in your Applications
folder.

3 Drag your MATLAB Runtime installation folder to the trash, and then select Empty
Trash from the Finder menu.

3-11

4

Distribute to End Users

• “MATLAB Runtime Path Settings for Development and Testing” on page 4-2
• “MATLAB Runtime Path Settings for Run-Time Deployment” on page 4-4

4 Distribute to End Users

MATLAB Runtime Path Settings for Development and Testing

In this section...

“Path for Java Development on All Platforms ” on page 4-2
“Path Modifications Required for Accessibility” on page 4-2
“Windows Settings for Development and Testing” on page 4-2
“Linux Settings for Development and Testing” on page 4-2
“OS X Settings for Development and Testing” on page 4-3

Path for Java Development on All Platforms

There are additional requirements when programming in the Java programming
language. For more information see “Configure Your Java Environment” on page 1-3.

Path Modifications Required for Accessibility

In order to use some screen-readers or assistive technologies, such as JAWS®, you must
add the following DLLs to your Windows path:

matlabroot\sys\java\jre\arch\jre\bin\JavaAccessBridge.dll

matlabroot\sys\java\jre\arch\jre\bin\WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

Windows Settings for Development and Testing

When programming with compiled MATLAB code, add the following folder to your
system PATH environment variable:

matlabroot\runtime\win32|win64

Linux Settings for Development and Testing

Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but you must
enter each setenv command on one line.

4-2

 MATLAB Runtime Path Settings for Development and Testing

setenv LD_LIBRARY_PATH

 matlabroot/runtime/glnxa64:

 matlabroot/bin/glnxa64:

 matlabroot/sys/os/glnxa64:

 matlabroot/sys/opengl/lib/glnxa64

OS X Settings for Development and Testing

Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but you must
enter each setenv command on one line.

setenv DYLD_LIBRARY_PATH

 matlabroot/runtime/maci64:

 matlabroot/bin/maci64:

 matlabroot/sys/os/maci64:

4-3

4 Distribute to End Users

MATLAB Runtime Path Settings for Run-Time Deployment

In this section...

“General Path Guidelines” on page 4-4
“Path for Java Applications on All Platforms” on page 4-4
“Windows Path for Run-Time Deployment” on page 4-4
“Linux Paths for Run-Time Deployment” on page 4-5
“OS X Paths for Run-Time Deployment” on page 4-5

General Path Guidelines

Regardless of platform, be aware of the following guidelines with regards to placing
specific folders on the path:

• Always avoid including arch on the path. Failure to do so may inhibit ability to run
multiple MATLAB Runtime instances.

• Ideally, set the environment in a separate shell script to avoid run-time errors caused
by path-related issues.

Path for Java Applications on All Platforms

When your users run applications that contain compiled MATLAB code, you must
instruct them to set the path so that the system can find the MATLAB Runtime.

Note: When you deploy a Java application to end users, they must set the class path on
the target machine.

The system needs to find .jar files containing the MATLAB libraries. To tell the system
how to locate the .jar files it needs, specify a classpath either in the javac command
or in your system environment variables.

Windows Path for Run-Time Deployment

The following folder should be added to the system path:

mcr_root\version\runtime\win32|win64

4-4

 MATLAB Runtime Path Settings for Run-Time Deployment

mcr_root refers to the complete path where the MATLAB Runtime library archive files
are installed on the machine where the application is to be run.

mcr_root is version specific; you must determine the path after you install the MATLAB
Runtime.

Note: If you are running the MATLAB Runtime installer on a shared folder, be aware
that other users of the share may need to alter their system configuration.

Linux Paths for Run-Time Deployment

Use these setenv commands to set your MATLAB Runtime paths.
setenv LD_LIBRARY_PATH

 mcr_root/version/runtime/glnxa64:

 mcr_root/version/bin/glnxa64:

 mcr_root/version/sys/os/glnxa64:

 mcr_root/version/sys/opengl/lib/glnxa64

OS X Paths for Run-Time Deployment

Use these setenv commands to set your MATLAB Runtime paths.
setenv DYLD_LIBRARY_PATH

 mcr_root/version/runtime/maci64:

 mcr_root/version/bin/maci64:

 mcr_root/version/sys/os/maci64

4-5

5

Sample Java Applications

• “Display a MATLAB Plot in a Java Application” on page 5-2
• “Create a Java Application with Two MATLAB Functions” on page 5-7
• “Matrix Math” on page 5-13
• “Phone Book” on page 5-22
• “Pass Java Objects to MATLAB” on page 5-28
• “Display a MATLAB Plot on the Web using a Java Servlet” on page 5-38

Note: Remember to double-quote all parts of the java command paths that contain
spaces. To test directly against the MATLAB Runtime when executing java, substitute
mcrroot for matlabroot, where mcrroot is the location where the MATLAB Runtime
is installed on your system.

5 Sample Java Applications

Display a MATLAB Plot in a Java Application
In this section...

“Purpose” on page 5-2
“Procedure” on page 5-2

Purpose

The purpose of the example is to show you how to do the following:

• Use the MATLAB Compiler SDK product to convert a MATLAB function
(drawplot.m) to a method of a Java class (plotter) and wrap the class in a Java
package (plotdemo).

• Access the MATLAB function in a Java application (createplot.java) by
instantiating the plotter class and using the MWArray class library to handle data
conversion.

Note: For complete reference information about the MWArray class hierarchy, see the
com.mathworks.toolbox.javabuilder package.

• Build and run the createplot.java application.

The drawplot.m function displays a plot of input parameters x and y.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\PlotExample

b At the MATLAB command prompt, cd to the new PlotExample subfolder in
your work folder.

2 If you have not already done so, set the environment variables that are required on a
development machine. See “Configure Your Java Environment” on page 1-3.

3 Write the drawplot.m function as you would any MATLAB function.

The following code defines the drawplot.m function:

function drawplot(x,y)

5-2

 Display a MATLAB Plot in a Java Application

plot(x,y);

This code is already in your work folder in PlotExample\PlotDemoComp
\drawplot.m.

4 While in MATLAB, issue the following command to open the Library Compiler app:

libraryCompiler

5 You create a Java package by using the Library Compiler app to build a Java class
that wraps around your MATLAB code.

To create the Java package the Library Compiler app, use the following information
as you work through this example in “Compile Java Packages with Library Compiler
App”:

Project Name plotdemo

Class Name plotter

File to compile drawplot.m

6 Write source code for an application that accesses the MATLAB function.

The sample application for this example is in matlabroot\toolbox\javabuilder
\Examples\PlotExample\PlotDemoJavaApp\createplot.java.

The program graphs a simple parabola from the equation y = x2 .

The program listing is shown here.

createplot.java

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import plotdemo.*;

/*

 * createplot class demonstrates plotting x-y data into

 * a MATLAB figure window by graphing a simple parabola.

 */

class createplot

{

 public static void main(String[] args)

 {

 MWNumericArray x = null; /* Array of x values */

 MWNumericArray y = null; /* Array of y values */

 plotter thePlot = null; /* Plotter class instance */

 int n = 20; /* Number of points to plot */

 try

 {

5-3

5 Sample Java Applications

 /* Allocate arrays for x and y values */

 int[] dims = {1, n};

 x = MWNumericArray.newInstance(dims,

 MWClassID.DOUBLE, MWComplexity.REAL);

 y = MWNumericArray.newInstance(dims,

 MWClassID.DOUBLE, MWComplexity.REAL);

 /* Set values so that y = x^2 */

 for (int i = 1; i <= n; i++)

 {

 x.set(i, i);

 y.set(i, i*i);

 }

 /* Create new plotter object */

 thePlot = new plotter();

 /* Plot data */

 thePlot.drawplot(x, y);

 thePlot.waitForFigures();

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 }

 finally

 {

 /* Free native resources */

 MWArray.disposeArray(x);

 MWArray.disposeArray(y);

 if (thePlot != null)

 thePlot.dispose();

 }

 }

}

The program does the following:

• Creates two arrays of double values, using MWNumericArray to represent the
data needed to plot the equation.

• Instantiates the plotter class as thePlot object, as shown:

thePlot = new plotter();

• Calls the drawplot method to plot the equation using the MATLAB plot
function, as shown:

thePlot.drawplot(x,y);

• Uses a try-catch block to catch and handle any exceptions.
7 Compile the createplot application using javac. When entering this command,

ensure there are no spaces between path names in the matlabroot argument.
For example, there should be no space between javabuilder.jar; and .

5-4

 Display a MATLAB Plot in a Java Application

\distrib\plotdemo.jar in the following example. cd to your work folder. Ensure
createplot.java is in your work folder

• On Windows, execute this command:

javac -classpath

 .;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

 .\distrib\plotdemo.jar createplot.java

• On UNIX, execute this command:

javac -classpath

 .:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

 ./distrib/plotdemo.jar createplot.java

8 Run the application.

To run the createplot.class file, do one of the following:

• On Windows, type:

java -classpath

 .;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

 .\distrib\plotdemo.jar

 createplot

• On UNIX, type:

java -classpath

 .:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

 ./distrib/plotdemo.jar

 createplot

Note: You should be using the same version of Java that ships with MATLAB. To
find out what version of Java MATLAB is running, enter the following MATLAB
command:

version -java

Caution: MathWorks® only supports the Oracle JDK and JRE. A certain measure
of cross-version compatibility resides in the Oracle software and it may be possible

5-5

5 Sample Java Applications

to run applications with compiled MATLAB functions with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note: If you are running on the Mac 64-bit platform, you must add the -d64 flag in
the Java command. See “Limitations of the MATLAB Compiler SDK Java Target” on
page 10-3 for more specific information.

The createplot program should display the output.

5-6

 Create a Java Application with Two MATLAB Functions

Create a Java Application with Two MATLAB Functions
In this section...

“Purpose” on page 5-7
“Procedure” on page 5-7

Purpose

The purpose of the example is to show you the following:

• How to use the MATLAB Compiler SDK product to create a package containing a
class that has a private method that is automatically encapsulated.

• How to access the MATLAB functions in a Java application, including use of the
MWArray class hierarchy to represent data

Note: For complete reference information about the MWArray class hierarchy, see the
com.mathworks.toolbox.javabuilder package.

• How to build and run the application

The spectralanalysis package analyzes a signal and graphs the result. The class,
fourier, performs a fast Fourier transform (FFT) on an input data array. A method
of this class, computefft, returns the results of that FFT as two output arrays—an
array of frequency points and the power spectral density. The second method, plotfft,
graphs the returned data. These two methods, computefft and plotfft, encapsulate
MATLAB functions.

The MATLAB code for these two methods is in computefft.m and plotfft.m, which
is found in matlabroot\toolbox\javabuilder\Examples\SpectraExample
\SpectraDemoComp.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\SpectraExample

b At the MATLAB command prompt, cd to the new SpectraExample subfolder in
your work folder.

5-7

5 Sample Java Applications

2 If you have not already done so, set the environment variables that are required on a
development machine. See “Configure Your Java Environment” on page 1-3.

3 Write the MATLAB code that you want to access.

This example uses computefft.m and plotfft.m which are already in your work
folder in SpectraExample\SpectraDemoComp.

4 Open the Library Compiler app.
5 Create the Java package by using the Library Compiler app to build a Java class

that wraps your MATLAB code.

Use the following information as you work through this example in “Compile Java
Packages with Library Compiler App”:

Project Name spectralanalysis

Class Name fourier

File to compile plotfft.m

Note: In this example, the application that uses the fourier class does not need to
call computefft directly. The computefft method is required only by the plotfft
method. Thus, when creating the package, you do not need to add the computefft
function, although doing so does no harm.

6 Write source code for an application that accesses the MATLAB functions.

The sample application for this example is in SpectraExample
\SpectraDemoJavaApp\powerspect.java.

The program listing is shown here.

powerspect.java

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import spectralanalysis.*;

/*

 * powerspect class computes and plots the power

 * spectral density of an input signal.

 */

class powerspect

{

 public static void main(String[] args)

 {

 double interval = 0.01; /* Sampling interval */

 int nSamples = 1001; /* Number of samples */

5-8

 Create a Java Application with Two MATLAB Functions

 MWNumericArray data = null; /* Stores input data */

 Object[] result = null; /* Stores result */

 fourier theFourier = null; /* Fourier class instance */

 try

 {

 /*

 * Construct input data as sin(2*PI*15*t) +

 * sin(2*PI*40*t) plus a random signal.

 * Duration = 10

 * Sampling interval = 0.01

 */

 int[] dims = {1, nSamples};

 data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE,

 MWComplexity.REAL);

 for (int i = 1; i <= nSamples; i++)

 {

 double t = (i-1)*interval;

 double x = Math.sin(2.0*Math.PI*15.0*t) +

 Math.sin(2.0*Math.PI*40.0*t) +

 Math.random();

 data.set(i, x);

 }

 /* Create new fourier object */

 theFourier = new fourier();

 theFourier.waitForFigures();

 /* Compute power spectral density and plot result */

 result = theFourier.plotfft(3, data,

 new Double(interval));

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 }

 finally

 {

 /* Free native resources */

 MWArray.disposeArray(data);

 MWArray.disposeArray(result);

 if (theFourier != null)

 theFourier.dispose();

 }

 }

}

The program does the following:

• Constructs an input array with values representing a random signal with two
sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data, as shown:
data = MWNumericArray.newInstance(dims, MWClassID.DOUBLE, MWComplexity.REAL);

• Instantiates a fourier object

5-9

5 Sample Java Applications

• Calls the plotfft method, which calls computeftt and plots the data
• Uses a try-catch block to handle exceptions
• Frees native resources using MWArray methods

7 Compile the powerspect.java application using javac. When entering this
command, ensure there are no spaces between path names in the matlabroot
argument. For example, there should be no space between javabuilder.jar; and
.\distrib\spectralanalysis.jar in the following example.

Open a Command Prompt window and cd to the matlabroot\spectralanalysis
folder. cd to your work folder. Ensure powerspect.java is in your work folder

• On Windows, execute the following command:

javac -classpath

.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

.\distrib\spectralanalysis.jar powerspect.java

• On UNIX, execute the following command:

javac -classpath

.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

./distrib/spectralanalysis.jar powerspect.java

Note: For matlabroot substitute the root MATLAB folder on your system. Type
matlabroot to see this folder name.

8 Run the application.

• On Windows, execute the powerspect class file:

java -classpath

.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar

.\distrib\spectralanalysis.jar

powerspect

• On UNIX, execute the powerspect class file:

java -classpath

.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

./distrib/spectralanalysis.jar

powerspect

5-10

 Create a Java Application with Two MATLAB Functions

Note: You should be using the same version of Java that ships with MATLAB. To
find out what version of Java MATLAB is running, enter the following MATLAB
command:

version -java

Caution: MathWorks only supports the Oracle JDK and JRE. A certain measure of
cross-version compatibility resides in the Oracle software and it may be possible to
run applications with compiled MATLAB functions with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note: If you are running on the Mac 64-bit platform, you must add the -d64 flag in
the Java command. See “Limitations of the MATLAB Compiler SDK Java Target” on
page 10-3 for more specific information.

The powerspect program should display the output:

5-11

5 Sample Java Applications

5-12

 Matrix Math

Matrix Math

In this section...

“Purpose” on page 5-13
“MATLAB Functions to Be Encapsulated” on page 5-14
“Understanding the getfactor Program” on page 5-14
“Procedure” on page 5-14

Purpose

The purpose of the example is to show you the following:

• How to assign more than one MATLAB function to a generated class.
• How to manually handle native memory management.
• How to access the MATLAB functions in a Java application (getfactor.java) by

instantiating Factor and using the MWArray class library to handle data conversion.

Note: For complete reference information about the MWArray class hierarchy, see the
com.mathworks.toolbox.javabuilder package.

• How to build and run the MatrixMathDemoApp application

This example builds a Java package to perform matrix math. The example creates a
program that performs Cholesky, LU, and QR factorizations on a simple tridiagonal
matrix (finite difference matrix) with the following form:

A = [2 -1 0 0 0

 -1 2 -1 0 0

 0 -1 2 -1 0

 0 0 -1 2 -1

 0 0 0 -1 2]

You supply the size of the matrix on the command line, and the program constructs the
matrix and performs the three factorizations. The original matrix and the results are
printed to standard output. You may optionally perform the calculations using a sparse
matrix by specifying the string "sparse" as the second parameter on the command line.

5-13

5 Sample Java Applications

MATLAB Functions to Be Encapsulated

The following code defines the MATLAB functions used in the example:

• cholesky.m

function [L] = cholesky(A)

L = chol(A);

• ludecomp.m

function [L,U] = ludecomp(A)

[L,U] = lu(A);

• qrdecomp.m

function [Q,R] = qrdecomp(A)

[Q,R] = qr(A);

Understanding the getfactor Program

The getfactor program takes one or two arguments from standard input. The first
argument is converted to the integer order of the test matrix. If the string sparse is
passed as the second argument, a sparse matrix is created to contain the test array. The
Cholesky, LU, and QR factorizations are then computed and the results are displayed to
standard output.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls the
cholesky, ludecomp, and qrdecomp methods. This part is executed inside of a try
block. This is done so that if an exception occurs during execution, the corresponding
catch block will be executed.

• The second part is the catch block. The code prints a message to standard output to
let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources before
exiting.

Procedure

Procedure 5.3. Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

5-14

 Matrix Math

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\MatrixMathExample

b At the MATLAB command prompt, cd to the new MatrixMathExample
subfolder in your work folder.

2 If you have not already done so, set the environment variables that are required on a
development machine. See “Configure Your Java Environment” on page 1-3.

3 Write the MATLAB functions as you would any MATLAB function.

The code for cholesky.m, ludecomp.m, and qrdecomp.m functions is already in
your work folder in MatrixMathExample\MatrixMathDemoComp\.

4 Select Library Compiler app.
5 Create the Java package using the Library Compiler app to build a Java class that

wraps around your MATLAB code.

Use the following information as you work through this example in “Compile Java
Packages with Library Compiler App”:

Project Name factormatrix

Class Name factor

Files to compile cholesky.m, ludecomp.m, and
qrdecomp.m

6 Write source code for an application that accesses the MATLAB functions.

The sample application for this example is in MatrixMathExample
\MatrixMathDemoJavaApp\getfactor.java.

The program listing is shown here.

getfactor.java

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import factormatrix.*;

/*

 * getfactor class computes cholesky, LU, and QR

 * factorizations of a finite difference matrix

 * of order N. The value of N is passed on the

 * command line. If a second command line arg

 * is passed with the value of "sparse", then

 * a sparse matrix is used.

 */

class getfactor

5-15

5 Sample Java Applications

{

 public static void main(String[] args)

 {

 MWNumericArray a = null; /* Stores matrix to factor */

 Object[] result = null; /* Stores the result */

 factor theFactor = null; /* Stores factor class instance */

 try

 {

 /* If no input, exit */

 if (args.length == 0)

 {

 System.out.println("Error: must input a positive integer");

 return;

 }

 /* Convert input value */

 int n = Integer.valueOf(args[0]).intValue();

 if (n <= 0)

 {

 System.out.println("Error: must input a positive integer");

 return;

 }

 /*

 * Allocate matrix. If second input is "sparse"

 * allocate a sparse array

 */

 int[] dims = {n, n};

 if (args.length > 1 && args[1].equals("sparse"))

 a = MWNumericArray.newSparse(dims[0], dims[1],n+2*(n-1),

 MWClassID.DOUBLE, MWComplexity.REAL);

 else

 a = MWNumericArray.newInstance(dims,MWClassID.DOUBLE, MWComplexity.REAL);

 /* Set matrix values */

 int[] index = {1, 1};

 for (index[0] = 1; index[0] <= dims[0]; index[0]++)

 {

 for (index[1] = 1; index[1] <= dims[1]; index[1]++)

 {

 if (index[1] == index[0])

 a.set(index, 2.0);

 else if (index[1] == index[0]+1 || index[1] == index[0]-1)

 a.set(index, -1.0);

 }

 }

 /* Create new factor object */

 theFactor = new factor();

 /* Print original matrix */

 System.out.println("Original matrix:");

 System.out.println(a);

 /* Compute cholesky factorization and print results. */

 result = theFactor.cholesky(1, a);

 System.out.println("Cholesky factorization:");

 System.out.println(result[0]);

5-16

 Matrix Math

 MWArray.disposeArray(result);

 /* Compute LU factorization and print results. */

 result = theFactor.ludecomp(2, a);

 System.out.println("LU factorization:");

 System.out.println("L matrix:");

 System.out.println(result[0]);

 System.out.println("U matrix:");

 System.out.println(result[1]);

 MWArray.disposeArray(result);

 /* Compute QR factorization and print results. */

 result = theFactor.qrdecomp(2, a);

 System.out.println("QR factorization:");

 System.out.println("Q matrix:");

 System.out.println(result[0]);

 System.out.println("R matrix:");

 System.out.println(result[1]);

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 }

 finally

 {

 /* Free native resources */

 MWArray.disposeArray(a);

 MWArray.disposeArray(result);

 if (theFactor != null)

 theFactor.dispose();

 }

 }

}

The statement:

theFactor = new factor();

creates an instance of the class factor.

The following statements call the methods that encapsulate the MATLAB functions:

result = theFactor.cholesky(1, a);

...

result = theFactor.ludecomp(2, a);

...

result = theFactor.qrdecomp(2, a);

...

7 Copy getfactor.java into the factormatrix folder.
8 Compile the getfactor application using javac. When entering this command,

ensure there are no spaces between path names in the matlabroot argument. For

5-17

5 Sample Java Applications

example, there should be no space between javabuilder.jar; and .\distrib
\factormatrix.jar in the following example.

cd to the factormatrix folder in your work folder.

• On Windows, execute the following command:

javac -classpath

.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

.\distrib\factormatrix.jar getfactor.java

• On UNIX, execute the following command:

javac -classpath

.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

./distrib/factormatrix.jar getfactor.java

9 Run the application.

Run getfactor using a nonsparse matrix

• On Windows, execute the getfactor class file as follows:

java -classpath

.;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

.\distrib\factormatrix.jar

getfactor 4

• On UNIX, execute the getfactor class file as follows:

java -classpath

.:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

./distrib/factormatrix.jar

getfactor 4

Note: You should be using the same version of Java that ships with MATLAB. To find
out what version of Java MATLAB is running, enter the following MATLAB command:

version -java

Caution: MathWorks only supports the Oracle JDK and JRE. A certain measure of
cross-version compatibility resides in the Oracle software and it may be possible to

5-18

 Matrix Math

run applications with compiled MATLAB functions with non-Oracle JDKs under some
circumstances—however, compatibility is not guaranteed.

Note: If you are running on theMac 64-bit platform, you must add the -d64 flag in the
Java command. See “Limitations of the MATLAB Compiler SDK Java Target” on page
10-3 for more specific information.

Output for the Matrix Math Example

Original matrix:

 2 -1 0 0

 -1 2 -1 0

 0 -1 2 -1

 0 0 -1 2

Cholesky factorization:

 1.4142 -0.7071 0 0

 0 1.2247 -0.8165 0

 0 0 1.1547 -0.8660

 0 0 0 1.1180

LU factorization:

L matrix:

 1.0000 0 0 0

 -0.5000 1.0000 0 0

 0 -0.6667 1.0000 0

 0 0 -0.7500 1.0000

U matrix:

 2.0000 -1.0000 0 0

 0 1.5000 -1.0000 0

 0 0 1.3333 -1.0000

 0 0 0 1.2500

QR factorization:

Q matrix:

 -0.8944 -0.3586 -0.1952 0.1826

 0.4472 -0.7171 -0.3904 0.3651

5-19

5 Sample Java Applications

 0 0.5976 -0.5855 0.5477

 0 0 0.6831 0.7303

R matrix:

 -2.2361 1.7889 -0.4472 0

 0 -1.6733 1.9124 -0.5976

 0 0 -1.4639 1.9518

 0 0 0 0.9129

To run the same program for a sparse matrix, use the same command and add the string
sparse to the command line:

java (... same arguments) getfactor 4 sparse

Output for a Sparse Matrix

Original matrix:

 (1,1) 2

 (2,1) -1

 (1,2) -1

 (2,2) 2

 (3,2) -1

 (2,3) -1

 (3,3) 2

 (4,3) -1

 (3,4) -1

 (4,4) 2

Cholesky factorization:

 (1,1) 1.4142

 (1,2) -0.7071

 (2,2) 1.2247

 (2,3) -0.8165

 (3,3) 1.1547

 (3,4) -0.8660

 (4,4) 1.1180

LU factorization:

L matrix:

 (1,1) 1.0000

 (2,1) -0.5000

 (2,2) 1.0000

5-20

 Matrix Math

 (3,2) -0.6667

 (3,3) 1.0000

 (4,3) -0.7500

 (4,4) 1.0000

U matrix:

 (1,1) 2.0000

 (1,2) -1.0000

 (2,2) 1.5000

 (2,3) -1.0000

 (3,3) 1.3333

 (3,4) -1.0000

 (4,4) 1.2500

QR factorization:

Q matrix:

 (1,1) 0.8944

 (2,1) -0.4472

 (1,2) 0.3586

 (2,2) 0.7171

 (3,2) -0.5976

 (1,3) 0.1952

 (2,3) 0.3904

 (3,3) 0.5855

 (4,3) -0.6831

 (1,4) 0.1826

 (2,4) 0.3651

 (3,4) 0.5477

 (4,4) 0.7303

R matrix:

 (1,1) 2.2361

 (1,2) -1.7889

 (2,2) 1.6733

 (1,3) 0.4472

 (2,3) -1.9124

 (3,3) 1.4639

 (2,4) 0.5976

 (3,4) -1.9518

 (4,4) 0.9129

5-21

5 Sample Java Applications

Phone Book
In this section...

“Purpose” on page 5-22
“Procedure” on page 5-22

Purpose

An example of how to process an MWStructArray as output from a generated class
might be:

Object[] tmp = myComponent.myFunction(1, myArray);

MWStructArray myStruct = (MWStructArray) tmp[0];

The makephone function takes a structure array as an input, modifies it, and supplies
the modified array as an output.

Note: For complete reference information about the MWArray class hierarchy, see the
com.mathworks.toolbox.javabuilder package.

Procedure

1 If you have not already done so, copy the files for this example as follows:

a Copy the following folder that ships with MATLAB to your work folder:

matlabroot\toolbox\javabuilder\Examples\PhoneExample

b At the MATLAB command prompt, cd to the new PhoneExample subfolder in
your work folder.

2 If you have not already done so, set the environment variables that are required on a
development machine. See “Configure Your Java Environment” on page 1-3.

3 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:
function book = makephone(friends)

book = friends;

for i = 1:numel(friends)

 numberStr = num2str(book(i).phone);

 book(i).external = ['(508) 555-' numberStr];

end

5-22

 Phone Book

This code is already in your work folder in makephone.m.
4 Select Library Compiler app.
5 Create a Java Package using the Library Compiler app to build a Java class that

wraps around your MATLAB code.

Use the following information as you work through this example in “Compile Java
Packages with Library Compiler App”:

Project Name phonebookdemo

Class Name phonebook

File to compile makephone.m
6 Write source code for an application that accesses the MATLAB functions.

The sample application for this example is in matlabroot\toolbox\javabuilder
\Examples\PhoneExample\PhoneDemoJavaApp\getphone.java.

The program defines a structure array containing names and phone numbers,
modifies it using a MATLAB function, and displays the resulting structure array.

The program listing is shown here.

getphone.java

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import phonebookdemo.*;

/*

 * getphone class demonstrates the use of the MWStructArray class

 */

class getphone

{

 public static void main(String[] args)

 {

 phonebook thePhonebook = null; /* Stores magic class instance */

 MWStructArray friends = null; /* Sample input data */

 Object[] result = null; /* Stores the result */

 MWStructArray book = null; /* Output data extracted from result */

 try

 {

 /* Create new magic object */

 thePhonebook = new phonebook();

 /* Create an MWStructArray with two fields */

 String[] myFieldNames = {"name", "phone"};

 friends = new MWStructArray(2,2,myFieldNames);

5-23

5 Sample Java Applications

 /* Populate struct with some sample data --- friends and phone numbers */

 friends.set("name",1,new MWCharArray("Jordan Robert"));

 friends.set("phone",1,3386);

 friends.set("name",2,new MWCharArray("Mary Smith"));

 friends.set("phone",2,3912);

 friends.set("name",3,new MWCharArray("Stacy Flora"));

 friends.set("phone",3,3238);

 friends.set("name",4,new MWCharArray("Harry Alpert"));

 friends.set("phone",4,3077);

 /* Show some of the sample data */

 System.out.println("Friends: ");

 System.out.println(friends.toString());

 /* Pass it to a MATLAB function that determines external phone number */

 result = thePhonebook.makephone(1, friends);

 book = (MWStructArray)result[0];

 System.out.println("Result: ");

 System.out.println(book.toString());

 /* Extract some data from the returned structure */

 System.out.println("Result record 2:");

 System.out.println(book.getField("name",2));

 System.out.println(book.getField("phone",2));

 System.out.println(book.getField("external",2));

 /* Print the entire result structure using the helper function below */

 System.out.println("");

 System.out.println("Entire structure:");

 dispStruct(book);

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 }

 finally

 {

 /* Free native resources */

 MWArray.disposeArray(result);

 MWArray.disposeArray(friends);

 MWArray.disposeArray(book);

 if (thePhonebook != null)

 thePhonebook.dispose();

 }

 }

 public static void dispStruct(MWStructArray arr) {

 System.out.println("Number of Elements: " + arr.numberOfElements());

 //int numDims = arr.numberOfDimensions();

 int[] dims = arr.getDimensions();

 System.out.print("Dimensions: " + dims[0]);

 for (int i = 1; i < dims.length; i++)

 {

 System.out.print("-by-" + dims[i]);

 }

 System.out.println("");

 System.out.println("Number of Fields: " + arr.numberOfFields());

 System.out.println("Standard MATLAB view:");

 System.out.println(arr.toString());

 System.out.println("Walking structure:");

5-24

 Phone Book

 java.lang.String[] fieldNames = arr.fieldNames();

 for (int element = 1; element <= arr.numberOfElements(); element++) {

 System.out.println("Element " + element);

 for (int field = 0; field < arr.numberOfFields(); field++) {

 MWArray fieldVal = arr.getField(fieldNames[field], element);

 /* Recursively print substructures, give string display of other classes */

 if (fieldVal instanceof MWStructArray)

 {

 System.out.println(" " + fieldNames[field] + ": nested structure:");

 System.out.println("+++ Begin of \"" +

 fieldNames[field] + "\" nested structure");

 dispStruct((MWStructArray)fieldVal);

 System.out.println("+++ End of \"" + fieldNames[field] +

 "\" nested structure");

 } else {

 System.out.print(" " + fieldNames[field] + ": ");

 System.out.println(fieldVal.toString());

 }

 }

 }

 }

}

The program does the following:

• Creates a structure array, using MWStructArray to represent the example
phonebook data.

• Instantiates the plotter class as thePhonebook object, as shown: thePhonebook
= new phonebook();

• Calls the makephone method to create a modified copy of the structure by adding
an additional field, as shown: result = thePhonebook.makephone(1,
friends);

• Uses a try-catch block to catch and handle any exceptions.
7 Compile the getphone application using javac. When entering this command,

ensure there are no spaces between path names in the matlabroot argument. For
example, there should be no space between javabuilder.jar; and .\distrib
\phonebookdemo.jar in the following example. cd to your work folder. Ensure
getphone.java is in your work folder

• On Windows, execute this command:

javac -classpath

 .;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

 .\distrib\phonebookdemo.jar getphone.java

• On UNIX, execute this command:

javac -classpath

 .:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

5-25

5 Sample Java Applications

 ./distrib/phonebookdemo.jar getphone.java

8 Run the application.

To run the getphone.class file, do one of the following:

• On Windows, type:

java -classpath

 .;matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

 .\distrib\phonebookdemo.jar

 getphone

• On UNIX, type:

java -classpath

 .:matlabroot/toolbox/javabuilder/jar/javabuilder.jar:

 ./distrib/phonebookdemo.jar

 getphone

Note: You should be using the same version of Java that ships with MATLAB. To
find out what version of Java MATLAB is running, enter the following MATLAB
command:

version -java

Caution: MathWorks only supports the Oracle JDK and JRE. A certain measure of
cross-version compatibility resides in the Oracle software and it may be possible to
run applications with compiled MATLAB functions with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note: If you are running on the Mac 64-bit platform, you must add the -d64 flag in
the Java command. See “Limitations of the MATLAB Compiler SDK Java Target” on
page 10-3 for more specific information.

The getphone program should display the output:

Friends:

2x2 struct array with fields:

5-26

 Phone Book

 name

 phone

Result:

2x2 struct array with fields:

 name

 phone

 external

Result record 2:

Mary Smith

3912

(508) 555-3912

Entire structure:

Number of Elements: 4

Dimensions: 2-by-2

Number of Fields: 3

Standard MATLAB view:

2x2 struct array with fields:

 name

 phone

 external

Walking structure:

Element 1

 name: Jordan Robert

 phone: 3386

 external: (508) 555-3386

Element 2

 name: Mary Smith

 phone: 3912

 external: (508) 555-3912

Element 3

 name: Stacy Flora

 phone: 3238

 external: (508) 555-3238

Element 4

 name: Harry Alpert

 phone: 3077

 external: (508) 555-3077

5-27

5 Sample Java Applications

Pass Java Objects to MATLAB

In this section...

“Purpose” on page 5-28
“OptimDemo Package” on page 5-28
“Prerequisites” on page 5-29
“Procedure” on page 5-30

Purpose

The purpose of this example is to show you how to:

• Use the MATLAB Compiler SDK product to create a package that applies MATLAB
optimization routines to objective functions implemented as Java objects.

• Access the MATLAB functions in a Java application , including use of the
MWJavaObjectRef class to create a reference to a Java object and pass it to the
generated Java methods.

Note: For complete reference information about the MWArray class hierarchy, see the
com.mathworks.toolbox.javabuilder Javadoc package in matlabroot/help/
toolbox/javabuilder/MWArrayAPI.

• Build and run the application.

OptimDemo Package

• The OptimDemo package finds a local minimum of an objective function and returns
the minimal location and value.

• The package uses the MATLAB optimization function fminsearch, and this example
optimizes the Rosenbrock banana function used in the MATLAB fminsearch
documentation.

• The class, Optimizer, performs an unconstrained nonlinear optimization on an
objective function implemented as a Java object.

• A method of this class, doOptim, accepts an initial guess and Java object that
implements the objective function, and returns the location and value of a local
minimum.

5-28

 Pass Java Objects to MATLAB

• The second method, displayObj, is a debugging tool that lists the characteristics of a
Java object.

• The two methods, doOptim and displayObj, encapsulate MATLAB functions. The
MATLAB code for these two methods is in doOptim.m and displayObj.m, which can
be found in matlabroot\toolbox\javabuilder\Examples\ObjectRefExample
\ObjectRefDemoComp.

Prerequisites

• Start this example by creating a new work folder that is visible to the MATLAB
search path. In this example, we will use the following folders:

Windows: c:\matlab\work

Linux: ~/matlab/work
• If you have not already done so, set the environment variables that are required on a

development machine. For more information, see “Configure Your Java Environment”
on page 1-3.

• Copy the following files to the work folder:

File(s) From To

javabuilder.jarmatlabroot\toolbox

\javabuilder\jar\win64

Windows: c:\matlab\work

Linux: ~/matlab/work
doOptim.m

displayObj.m

matlabroot\toolbox

\javabuilder\Examples

\ObjectRefExample

\ObjectRefDemoComp

Windows: c:\matlab\work

Linux: ~/matlab/work

BananaFunction.java

PerformOptim.java

matlabroot\toolbox

\javabuilder\Examples

\ObjectRefExample

\ObjectRefDemoJavaApp

Windows: c:\matlab\work

Linux: ~/matlab/work

Your work folder should now have the following five files:

c:\matlab\work

javabuilder.jar

doOptim.m

5-29

5 Sample Java Applications

displayObj.m

BananaFunction.java

PerformOptim.java

Procedure

1 Open MATLAB and cd to the work folder you created in the prerequisite section.
2 Write the MATLAB code you want to access from Java. This example uses

doOptim.m and displayObj.m, which are already in your work folder.

For reference, the code from doOptim.m is displayed here:

function [x,fval] = doOptim(h, x0)

directEval = h.evaluateFunction(x0)

wrapperEval = mWrapper(x0)

[x,fval] = fminsearch(mWrapper,x0)

For reference, the code from displayObj.m is displayed here:

function className = displayObj(h)

h

className = class(h)

whos('h')

methods(h)

3 At the MATLAB command prompt, type libraryCompiler to open the Library
Compiler app.

4 Use the Library Compiler app to create a Java package from the MATLAB
functions doOptim.m and displayObj.m. Use the following naming conventions for
your package:

Save the project in your work folder using the
name:

OptimDemo

Library Name: OptimDemo

Class Name: Optimizer

Exported Functions (files to compile) : doOptim.m and displayObj.m

The Java classes created by the Library Compiler app serve as wrapper around
the MATLAB code.

The Library Compiler app will create a folder by the name OptimDemo in the c:
\matlab\work directory. The OptimDemo folder contains the following sub folders:

5-30

 Pass Java Objects to MATLAB

for_redistribution

for_redistribution_files_only

for_testing

The files that you will need for the rest of the example are located in the
for_testing folder.

For more information on working with the Library Compiler app, see “Compile
Java Packages with Library Compiler App”.

5 Write source code for a class that implements an object function to optimize. The
code for this example is in file BananaFunction.java. The program listing is
shown here:

public class BananaFunction {

 public BananaFunction() {}

 public double evaluateFunction(double[] x)

 {

 /* Implements the Rosenbrock banana function described in

 * the FMINSEARCH documentation

 */

 double term1 = 100*java.lang.Math.pow((x[1]-Math.pow(x[0],2.0)),2.0);

 double term2 = Math.pow((1-x[0]),2.0);

 return term1 + term2;

 }

}

The class implements the Rosenbrock banana function described in the MATLAB
fminsearch documentation.

6 Write source code for an application that accesses the MATLAB functions. The code
for this example is in the file PerformOptim.java. The program listing is shown
here:

5-31

5 Sample Java Applications

/* Necessary package imports */

import com.mathworks.toolbox.javabuilder.*;

import OptimDemo.*;

/*

 * Demonstrates the use of the MWJavaObjectRef class

 * Takes initial point for optimization as two arguments:

 * PerformOptim -1.2 1.0

 */

class PerformOptim

{

 public static void main(String[] args)

 {

 Optimizer theOptimizer = null; /* Stores component

 instance */

 MWJavaObjectRef origRef = null; /* Java object reference to

 be passed to component */

 MWJavaObjectRef outputRef = null; /* Output data extracted

 from result */

 MWNumericArray x0 = null; /* Initial point for optimization */

 MWNumericArray x = null; /* Location of minimal value */

 MWNumericArray fval = null; /* Minimal function value */

 Object[] result = null; /* Stores the result */

 try

 {

 /* If no input, exit */

 if (args.length < 2)

 {

 System.out.println("Error: must input initial x0_1

 and x0_2 position");

 return;

 }

 /* Instantiate a new Java object */

 /* This should only be done once per application instance */

 theOptimizer = new Optimizer();

 try {

 /* Initial point --- parse data from text fields */

 double[] x0Data = new double[2];

 x0Data[0] = Double.valueOf(args[0]).doubleValue();

 x0Data[1] = Double.valueOf(args[1]).doubleValue();

 x0 = new MWNumericArray(x0Data, MWClassID.DOUBLE);

5-32

 Pass Java Objects to MATLAB

 System.out.println("Using x0 =");

 System.out.println(x0);

 /* Create object reference to objective function object */

 BananaFunction objectiveFunction = new BananaFunction();

 origRef = new MWJavaObjectRef(objectiveFunction);

 /* Pass Java object to a MATLAB function that lists its

 methods, etc */

 System.out.println("*********************************");

 System.out.println("** Properties of Java object **");

 System.out.println("*********************************");

 result = theOptimizer.displayObj(1, origRef);

 MWArray.disposeArray(result);

 System.out.println("** Finished DISPLAYOBJ **********");

 /* Call the Java component to optimize the function */

 /* using the MATLAB function FMINSEARCH */

 System.out.println("**********************************");

 System.out.println("** Unconstrained nonlinear optim**");

 System.out.println("**********************************");

 result = theOptimizer.doOptim(2, origRef, x0);

 try {

 System.out.println("** Finished DOOPTIM ****** *********");

 x = (MWNumericArray)result[0];

 fval = (MWNumericArray)result[1];

 /* Display the results of the optimization */

 System.out.println("Location of minimum: ");

 System.out.println(x);

 System.out.println("Function value at minimum: ");

 System.out.println(fval.toString());

 }

 finally

 {

 MWArray.disposeArray(result);

 }

 }

 finally

 {

 /* Free native resources */

 MWArray.disposeArray(origRef);

 MWArray.disposeArray(outputRef);

 MWArray.disposeArray(x0);

5-33

5 Sample Java Applications

 }

 }

 catch (Exception e)

 {

 System.out.println("Exception: " + e.toString());

 }

 finally

 {

 /* Free native resources */

 if (theOptimizer != null)

 theOptimizer.dispose();

 }

 }

}

The program accomplishes the following:

• Instantiates an object of the BananaFunction class above to be optimized.
• Creates an MWJavaObjectRef that references the BananaFunction object, as

shown: origRef = new MWJavaObjectRef(objectiveFunction);.
• Instantiates an Optimizer object.
• Calls the displayObj method to verify that the Java object is being passed

correctly.
• Calls the doOptim method, which uses fminsearch to find a local minimum of

the objective function.
• Uses a try/catch block to handle exceptions.
• Frees native resources using MWArray methods.

7 Compile the PerformOptim.java application and BananaFunction.java helper
class using the Java command javac. When entering this command, ensure there
are no spaces between path names separated by a semicolon (;).

1 Open a Command Prompt or Terminal window and cd to the work folder.
2 Compile the application according to which operating system you are running

on:

Windows

To compile BananaFunction.java, type:

5-34

 Pass Java Objects to MATLAB

javac -classpath .;

c:\matlab\work\javabuilder.jar;

c:\matlab\work\OptimDemo\for_testing\OptimDemo.jar BananaFunction.java

To compile PerformOptim.java, type:

javac -classpath .;

c:\matlab\work\javabuilder.jar;

c:\matlab\work\OptimDemo\for_testing\OptimDemo.jar PerformOptim.java

Linux

To compile BananaFunction.java, type:

javac -classpath .:

~/matlab/work/javabuilder.jar:

~/matlab/work/OptimDemo/for_testing/OptimDemo.jar BananaFunction.java

To compile PerformOptim.java, type:

javac -classpath .:

~/matlab/work/javabuilder.jar:

~/matlab/work/OptimDemo/for_testing/OptimDemo.jar PerformOptim.java

8 Execute the PerformOptim class file as follows:

On Windows, type:

java -classpath .;

c:\matlab\work\javabuilder.jar;

c:\matlab\work\OptimDemo\for_testing\OptimDemo.jar PerformOptim -1.2 1.0

On Linux, type:

java -classpath .:

~/matlab/work/javabuilder.jar:

~/matlab/work/OptimDemo/for_testing/OptimDemo.jar PerformOptim -1.2 1.0

Note: You should be using the same version of Java that ships with MATLAB. To
find out what version of Java MATLAB is running, enter the following MATLAB
command:

version -java

5-35

5 Sample Java Applications

Caution: MathWorks only supports the Oracle JDK and JRE. A certain measure of
cross-version compatibility resides in the Oracle software and it may be possible to
run applications with compiled MATLAB functions with non-Oracle JDKs under
some circumstances—however, compatibility is not guaranteed.

Note: If you are running on the Mac 64-bit platform, you must add the -d64 flag in
the Java command. See “Limitations of the MATLAB Compiler SDK Java Target” on
page 10-3 for more specific information.

When run successfully, the PerformOptim program should display the following output:

Using x0 =

-1.2000 1.0000

** Properties of Java object **

h =

BananaFunction@1766806

className =

BananaFunction

 Name Size Bytes Class Attributes

 h 1x1 BananaFunction

Methods for class BananaFunction:

 BananaFunction getClass notifyAll

equals hashCode toString

evaluateFunction notify wait

** Finished DISPLAYOBJ ******************************

** Performing unconstrained nonlinear optimization **

5-36

 Pass Java Objects to MATLAB

directEval =

 24.2000

 wrapperEval =

 24.2000

 x =

 1.0000 1.0000

 fval =

 8.1777e-10

Optimization successful

** Finished DOOPTIM *********************************

Location of minimum:

1.0000 1.0000

Function value at minimum:

8.1777e-10

5-37

5 Sample Java Applications

Display a MATLAB Plot on the Web using a Java Servlet

In this section...

“Overview” on page 5-38
“Prerequisites” on page 5-38
“Locating and Copying the Example Files” on page 5-39
“Build Your Java Package” on page 5-40
“Compiling Your Java Code” on page 5-40
“Generating the Web Archive (WAR) File ” on page 5-41
“Running the Web Deployment Example” on page 5-41
“Using the Web Application” on page 5-42

Overview

This example demonstrates how to display a plot created by a Java servlet calling a
class created with the MATLAB Compiler SDK product over a Web interface. This
example uses MATLAB varargin and varargout for optional input and output to the
varargexample.m function. For more information about varargin and varargout, see
“Specify Optional Arguments” on page 2-16.

Prerequisites

This section describes what you need to know and do before you create the Web
deployment example.

• “Ensure You Have the Required Products” on page 5-38
• “Ensure Your Web Server Is Java Compliant” on page 5-39
• “Install the javabuilder.jar Library” on page 5-39

Ensure You Have the Required Products

The following products must be installed at their recommended release levels.

• MATLAB, MATLAB Compiler, MATLAB Compiler SDK
• Java Development Kit (JDK)

5-38

 Display a MATLAB Plot on the Web using a Java Servlet

Ensure you have a JDK installed on your system. You can download it from Oracle,
Inc.

Note: You should be using the same version of Java that ships with MATLAB. To
find out what version of Java MATLAB is running, enter the following MATLAB
command:

version -java

Caution: MathWorks only supports the Oracle JDK and JRE. A certain measure of
cross-version compatibility resides in the Oracle software and it may be possible to
run applications with compiled MATLAB functions with non-Oracle JDKs under some
circumstances—however, compatibility is not guaranteed.

Ensure Your Web Server Is Java Compliant

In order to run this example, your Web server must be capable of running accepted Java
frameworks like J2EE. Running the WebFigures example (“Implement a WebFigure” on
page 6-4) also requires the ability to run servlets in WARs (Web Archives).

Install the javabuilder.jar Library

Ensure that the javabuilder.jar library (matlabroot/toolbox/javabuilder/
jar/javabuilder.jar) has been installed into your Web server’s common library
folder.

Locating and Copying the Example Files

The example files are located in the matlabroot\toolbox\javabuilder\Examples
\java_web_vararg_demo folder.

Contents of the Example Files

The example files contain the following three folders:

• mcode — Contains all of the MATLAB source code.
• JavaCode — Contains the required Java files and libraries.

5-39

http://www.oracle.com/us/technologies/java/overview/index.html
http://www.oracle.com/us/technologies/java/overview/index.html

5 Sample Java Applications

• compile — Contains some helpful MATLAB functions to compile and clean up the
example.

Note: As an alternative to compiling the example code manually and
creating the application WAR (Web Archive) manually, you can run
compileVarArgServletDemo.m in the compile folder. If you choose this
option and want to change the locations of the output files, edit the values in
getVarArgServletDemoSettings.m.

If you choose to run compileVarArgServletDemo.m, consult the readme file in the
download for additional information and then skip to “Running the Web Deployment
Example” on page 5-41.

Copy the Example Files

Copy the folder java_web_vararg_demo containing example files to a local folder.
Failure to do so may lead to errors.

Build Your Java Package

Build your Java package by compiling your code into a deployable .jar file.

1 Open the Library Compiler app.
2 Create the Java package using the Library Compiler app to build a Java class that

wraps around your MATLAB code.

To compile the Java package using the Library Compiler app, use the following
information as you work through this example in “Compile Java Packages with
Library Compiler App”:

Project Name vararg_java

Class Name vararg_javaclass

File to compile varargexample.m

Compiling Your Java Code

Use javac to compile the Java source file VarArgServletClass.java from example
folder JavaCode\src\VarArg.

5-40

 Display a MATLAB Plot on the Web using a Java Servlet

javac.exe should be located in the bin folder of your JDK installation.

Ensure your classpath is set to include:

• javabuilder.jar — included with MATLAB Compiler SDK
• vararg_java.jar — the JAR file you just built
• servlet-api.jar — included as part of the servlet container

For more details about using javac, see the Oracle website.

Generating the Web Archive (WAR) File

Web archive or WAR files are a type of Java Archive used to deploy J2EE and JSP
servlets. To run this example you will need to use the jar command to generate the final
WAR file that runs the application. To do this, follow these steps:

1 Copy the JAR file created using the MATLAB Compiler SDK product into the
JavaCode\build\WEB-INF\classes\VarArg example folder.

2 Copy the compiled Java class to the JavaCode\build\WEB-INF\classes\VarArg
example folder.

3 From the folder JavaCode, use the jar command to generate the final WAR as
follows:

jar cf VarArgServlet.war -C build .

Caution: Don't omit the . parameter above, which denotes the current working
folder.

For more information about the jar command, refer to the Oracle Web site.

Running the Web Deployment Example

When you're ready to run the application, do the following:

1 Install the VarArgServlet.war file into your Web server’s webapps folder.
2 Run the application by entering http://localhost:port_number/

VarArgServlet in the address field of your Web browser, where port_number is
the port that your Web server is configured to use (usually 8080).

5-41

http://www.oracle.com/us/technologies/java/overview/index.html
http://www.oracle.com/us/technologies/java/overview/index.html

5 Sample Java Applications

Using the Web Application

To use the application, do the following on the http://localhost/VarArgServlet
Web page:

1 Enter any amount of numbers to plot in the Data to Plot field.
2 Select Line Color and Border Color using the Optional Input drop-down lists.

Note that these optional inputs are passed as varargin to the compiled MATLAB
code.

3 Select additional information you want to output, such as mean and standard
deviation, by clicking an option in the Optional Output area. Note that these
optional outputs are set as varargout from the compiled MATLAB code.

4 Click Display Plot. Example output is shown below using the Mean optional
output.

5-42

 Display a MATLAB Plot on the Web using a Java Servlet

5-43

6

Display MATLAB Figures Over the
Web

• “How Do WebFigures Work?” on page 6-2
• “Supported Renderers for WebFigures” on page 6-3
• “Implement a WebFigure” on page 6-4
• “Attach a WebFigure to a Server Cache” on page 6-9
• “Reference a WebFigure Using the JSP Tag” on page 6-11
• “Reference a WebFigure Using an Embeddable String” on page 6-13

6 Display MATLAB Figures Over the Web

How Do WebFigures Work?

WebFigures is made up of several different components that work together:

• Your web application
• Client-side code
• WebFigureService

• Your server's cache

WebFigures use AJAX to simulate MATLAB figures in a web browser. When a browser
requests a WebFigure, your web application calls the deployed component for the
WebFigure. The component returns a collection of static images that show the figure in
all available orientations and stores them in the server cache for WebFigureService
to access as needed. WebFiguresService, which is exposed by WebFigureServlet,
delivers the HTML and JavaScript® to the browser, getting the defaults for a figure, and
rendering a figure in any of its available orientations.

The client-side of your web application puts an HTML reference to your WebFigure on
a page. This can either be done automatically using the JSP tag or manually by using
WebFigureHtmlGenerator. This gives the client browser what it needs to request the
client-side code.

The client-side AJAX code provides a user experience similar to that in MATLAB when
using a FIGURE. It provides rotation, zooming, and panning in a highly usable medium
by using a JavaScript application that monitors for user interaction such as dragging
or clicking with a mouse, and calls back into WebFiguresService to service those
requests.

For example, when a user selects the rotate icon and clicks in the WebFigureTag
and drags it, that drag translates to coordinates and issues a request for the new
rotated image from WebFiguresService. A rotating cube is displayed so the user
knows what orientation they are looking at. Since there is no efficient way to pass an
actual WebFigure from your application to the client-side application and then back to
WebFiguresService, the server's built-in cache is leveraged as a central repository.

6-2

 Supported Renderers for WebFigures

Supported Renderers for WebFigures

The MATLAB Compiler SDK WebFigures feature uses the same renderer used when the
figure was originally created by the MATLAB renderer.

For more information about MATLAB renderers, see the MATLAB documentation.

Note: The WebFigures feature does not support the Painter renderer due to technical
limitations. If this renderer is requested, the renderer Zbuffer will be invoked before
the data is displayed on the Web page.

6-3

6 Display MATLAB Figures Over the Web

Implement a WebFigure

This example implements a WebFigure. It deploys the WebFigure service and the page
that has the WebFigure embedded in it on a single server. This configuration allows you
to quickly reference your WebFigure from a JSP page with minimal configuration.

1 Configure the web server.

• Install the MATLAB Runtime in a location where it is accessible to the web
server.

• Add matlabroot\toolbox\javabuilder\jar\javabuilder.jar to the
classpath of the web server.

Caution: This file uses native resources. It is critical that it exist in your Web
server's class PATH only once. Embedding this file into Web applications causes
errors.

2 Verify that your web server is properly configured by deploying the
WebFigureQuickStart application.

1 Deploy matlabroot\toolbox\javabuilder\jar
\WebFigureQuickStart.war to your web server.

2 Open http://hostName:portNumber/WebFigureQuickStart/
WebFigureExample.jsp in a web browser.

The following default figure page appears:

6-4

 Implement a WebFigure

3 Click and drag to manipulate the figure.

For example, to zoom in the figure, click the magnifying glass icon, then hover
over the figure.

Tip: Once you have verified that your web server is properly configured you can
undeploy the default WebFigure.

3 Compile the getPlot function as a Java package.

function df = getPlot()

 f = figure('Visible','off');

 x = -2:0.25:2;

 [X,Y] = meshgrid(x);

 Z = X.*exp(-X.^2-Y.^2);

 contour3(X,Y,Z,30);

 df = webfigure(f);

 close(f);

end

6-5

6 Display MATLAB Figures Over the Web

4 Create a web application containing the jar file generated by MATLAB Compiler
SDK and a JSP file to display the figure.

The generated jar file should be placed in the WEB-INF\lib folder of the web
application. The JSP file should be in the root folder of the web application.

5 Open the WEB-INF\web.xml file and add the reference to WebFigureServlet.

<servlet>

 <servlet-name>WebFigures</servlet-name>

 <servlet-class>

 com.mathworks.toolbox.javabuilder.webfigures.WebFiguresServlet

 </servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>WebFigures</servlet-name>

 <url-pattern>/WebFigures/*</url-pattern>

</servlet-mapping>

6 Copy MATLABROOT/toolbox/javabuilder/webfigures/webfigures.tld, the
WebFigures customer tag handler file, to the WEB-INF folder of your web application.

7 In the JSP file, add a reference to the WebFigure tag by including the following line
of code at the beginning of the file.

<%@ taglib

 prefix="wf"

 uri="http://www.mathworks.com/builderja/webfigures.tld"

%>

8 In the JSP file, add a reference to the package you created using MATLAB Compiler
SDK.

<%@ page import="getPlot.Class1" %>

9 In the JSP file, add references to the MATLAB Compiler SDK packages that
implement WebFigures.

<%@ page import="com.mathworks.toolbox.javabuilder.webfigures.WebFigure" %>

<%@ page import="com.mathworks.toolbox.javabuilder.*" %>

10 In the JSP file, add code to instantiate the deployed class.

<%! Class1 myDeployedComponent; %>

<%!

 public void jspInit()

 {

 try {

 //Instantiate the Deployed Component

 myDeployedComponent = new Class1();

 } catch (Exception e)

 {

 e.printStackTrace();

 }

 }

6-6

 Implement a WebFigure

%>

<%!

 public void jspDestroy()

 {

 if (myDeployedComponent!=null)

 {

 myDeployedComponent.dispose();

 }

 myDeployedComponent = null;

 }

%>

11 Return the WebFigure and attach it to tag for display.

<%

 if (myDeployedComponent!=null)

 {

 try

 {

 // Get the WebFigure from your function's output

 WebFigure webFigure = (WebFigure)

 ((MWJavaObjectRef)myDeployedComponent.getPlot(1)[0]).get();

 // set it to the tag

 request.getSession().setAttribute("MyFigure", webFigure);

 } catch(ClassCastException e)

 {

 throw new Exception("Issue casting deployed components outputs to WebFigure",

 e);

 } catch (Exception e)

 {

 e.printStackTrace();

 }

 } else {

 out.println("no go");

 }

%>

<wf:web-figure name="MyFigure" scope="session"/>

12 Run your application.

Your custom WebFigure appears:

6-7

6 Display MATLAB Figures Over the Web

6-8

 Attach a WebFigure to a Server Cache

Attach a WebFigure to a Server Cache

In this section...

“Attaching to the Session Cache” on page 6-9
“Attaching to the Application Cache” on page 6-10

All components access available WebFigures by using web server cache mechanisms.
This allows you to leverage built-in J2EE mechanisms to scale your servers into a farm
and automatically propagate the session across the servers.

There are a number of ways to attach a WebFigure to a scope, depending on the state:

• Attaching to the session cache session
• Attaching to the application cache application

Attaching to the Session Cache

The session cache is visible only to the current user in a system and is usually used to
store user session-specific information. When the user disconnects from the web server,
the session cache is cleared.

Attaching to the session cache can be an ideal choice if the figure is valid only for a
specific user, at a certain time.

To do this, add the following line of code to a JSP scriptlet or a servlet:

//from a JSP scriplet or a servlet to the Session cache

request.getSession().setAttribute("myFigure", myFigure);

Use the tag attributes to associate the WebFigure tag with the attached WebFigure
instance:

name="myFigure" scope="session"

Note: The name given to the JSP tag must match the one used to attach it to a cache,
and the name must be unique within that cache.

6-9

6 Display MATLAB Figures Over the Web

Attaching to the Application Cache

The application cache is visible by all sessions in the current application. It persists until
the web application shuts down.

Attach to the application cache if you want to attach the figure globally for every page
and servlet to use.

To attach to the application cache, add the following line of code to a JSP scriptlet or a
servlet:
//from a JSP scriplet or a servlet to the Application cache

request.getSession().getServletContext().setAttribute("GlobalFigure",

 myFigure);

Use the tag attributes to associate the WebFigure tag with the attached WebFigure
instance:

name="GlobalFigure" scope="application"

Note: The name given to the JSP tag must match the one used to attach it to a cache,
and the name must be unique within that cache.

6-10

 Reference a WebFigure Using the JSP Tag

Reference a WebFigure Using the JSP Tag
Once the WebFigure has been retrieved from the function output, you can attach it to one
of your server's caches and reference it from the JSP tag.

Initialize the JSP Tag

Reference the tag library by adding the following line to a JSP page:

<%@ taglib

 prefix="wf"

 uri="http://www.mathworks.com/builderja/webfigures.tld"

%>

The code references the webfigures.tld file from the WEB-INF folder of your web
application folder. This URI must be typed exactly as shown above for the name to
properly resolve the reference. Once this tag has been referenced, you can add tags to the
page similar to this:

<wf:web-figure />

Note: If you use an empty tag as shown above, the default WebFigure appears. To bind
the tag to your WebFigure, see “Attach a WebFigure to a Server Cache” on page 6-9.

Attributes of a WebFigure Tag

The WebFigure tag has two key attributes: name and scope. These attributes indicate
which figure to use in which cache on your server. To display a WebFigure, MyFigure,
attached to the session cache add the JSP tag:

<wf:web-figure name="MyFigure" scope="session"/>

WebFigure Tag Attributes and Their Default Values describes the WebFigure tag
attributes.

WebFigure Tag Attributes and Their Default Values

Attribute Name Description Optional? Default Value

name Name used when
attaching your figure to
a cache. Case sensitive.

Yes The name of the default
WebFigure built into

6-11

6 Display MATLAB Figures Over the Web

Attribute Name Description Optional? Default Value

WebFigureService. If
you provide an empty
WebFigure tag, this
figure is displayed.

scope Scope that your figure
has been saved to
(either application
or session).

Yes If this is not specified,
an error is thrown
unless the name is
also not specified. In
this case, the default
figure is attached to
the session scope and is
used.

style Style attribute that you
want embedded and
attached to the iFrame.

Yes If this is not passed, a
basic iFrame is used.

height Height of the iFrame
that will be embedded.

Yes If this is not passed,
the height of the
WebFigure is retrieved
from cache.

width Width of the iFrame
that will be embedded.

Yes If this is not passed, the
width of the WebFigure
is retrieved from cache.

root Name used to map the
WebFiguresServlet

for a figure.

Yes If this is not specified,
it is assumed to
be mapped to
WebFigures. If it is
specified to a relative
servlet end point, that
is used.

6-12

 Reference a WebFigure Using an Embeddable String

Reference a WebFigure Using an Embeddable String

If you do not want to use the WebFigure JSP tag to display the figure, or want a servlet
to display it directly, use this method to get a snippet of HTML that will embed an
iFrame containing the figure in another page.

1 Create an instance of the WebFigureHtmlGenerator class using either a scriptlet
or a servlet. The constructor for this class has three overloads:
//The import statement needed to invoke this class

import com.mathworks.toolbox.javabuilder.webfigures.WebFigureHtmlGenerator;

//WebFigureHtmlGenerator(HttpServletRequest servletRequest)

//This overload just takes the ServletRequest and will map the

// embed string to the same server and assumes that the

// WebFiguresService was mapped to “WebFigures"

WebFigureHtmlGenerator htmlGenerator =

 WebFigureHtmlGenerator(servletRequest);

//OR

//WebFigureHtmlGenerator(String webFigureServletNameMapping, HttpServletRequest

// servletRequest)

//This overload takes the ServletRequest and the name that

// the WebFigureServlet was mapped to.

//It will reference this servlet on the same server

WebFigureHtmlGenerator htmlGenerator =

 WebFigureHtmlGenerator("SomeServletMappingName", servletRequest);

//OR

//WebFigureHtmlGenerator(String absolutePathName)

//This overload takes the absolute URL path to a server that has

// WebFiguresService running.

//This would be used if you have a cluster of servers that are all running

// WebFigureService

// a load balancer (all sharing cache state). Use

// this parameter to reference that base load balancer URL.

WebFigureHtmlGenerator htmlGenerator =

 WebFigureHtmlGenerator("http://someLoadBalancer/someWebApplication/

 WebFigureServletNameMapping");

2 Call the method to get the embedded string (getFigureEmbedString). Use this
table to specify appropriate attributes:

Attribute Name Attribute Type Description Optional Default Value

figure WebFigure WebFigure for
which you want
to create the
embedded string.

Yes This is used to
determine the
figure's default
height and width

6-13

6 Display MATLAB Figures Over the Web

Attribute Name Attribute Type Description Optional Default Value

if no other is
provided .

name String Name used when
attaching your
figure to a cache.
Case sensitive.

No Not optional

scope String Scope that figure
has been saved to
(application or
session).

No Not optional

style String Embedded
attribute you want
attached to the
iFrame.

Yes If this is not
passed, a basic
iFrame is used.

height String Height of the
iFrame that will
be embedded.

Yes If this is not
passed, the height
of the WebFigure
is retrieved from
cache. If the
WebFigure cannot
be found, the
MATLAB default
height for a figure
(420) is used.

width String Width of the
iFrame that will
be embedded.

Yes If this is not
passed, the width
of the WebFigure
is retrieved from
cache. If the
WebFigure cannot
be found, the
MATLAB default
width for a figure
(560) is used.

6-14

7

Working with MATLAB Figures and
Images

• “Roles in Working with Figures and Images” on page 7-2
• “Work with MATLAB Figure and Image Data” on page 7-3

7 Working with MATLAB Figures and Images

Roles in Working with Figures and Images

When you work with figures and images as a MATLAB programmer, you are responsible
for:

• Preparing a MATLAB figure for export
• Making changes to the figure (optional)
• Exporting the figure
• Cleaning up the figure window

When you work with figures and images as a front-end Web developer, some of the tasks
you are responsible for include:

• Getting a WebFigure from a deployed component
• Getting raw image data from a deployed component converted into a byte array
• Getting a buffered image from a component
• Getting a buffered image or a byte array from a WebFigure

7-2

 Work with MATLAB Figure and Image Data

Work with MATLAB Figure and Image Data

In this section...

“For More Comprehensive Examples” on page 7-3
“Working with Figures” on page 7-3
“Working with Images” on page 7-3

For More Comprehensive Examples

This section contains code snippets intended to demonstrate specific functionality related
to working with figure and image data.

To see these snippets in the context of more fully-functional multi-step examples, see the
“Use MATLAB Compiler SDK Web Example Guide”.

Working with Figures

Getting a Figure From a Deployed Component

For information about how to retrieve a figure from a deployed component, see
“Implement a WebFigure” on page 6-4

Working with Images

Getting Encoded Image Bytes from an Image in a Component

public byte[] getByteArrayFromDeployedComponent()

{

 Object[] byteImageOutput = null;

 MWNumericArray numericImageByteArray = null;

 try

 {

 byteImageOutput =

 deployment.getImageDataOrientation(

 1, //Number Of Outputs

 500, //Height

 500, //Width

 30, //Elevation

 30, //Rotation

7-3

7 Working with MATLAB Figures and Images

 "png" //Image Format

);

 numericImageByteArray =

 (MWNumericArray)byteImageOutput[0];

 return numericImageByteArray.getByteData();

 }

 finally

 {

 MWArray.disposeArray(byteImageOutput);

 }

}

Getting a Buffered Image in a Component

public byte[] getByteArrayFromDeployedComponent()

{

 Object[] byteImageOutput = null;

 MWNumericArray numericImageByteArray = null;

 try

 {

 byteImageOutput =

 deployment.getImageDataOrientation(

 1, //Number Of Outputs

 500, //Height

 500, //Width

 30, //Elevation

 30, //Rotation

 "png" //Image Format

);

 numericImageByteArray =

 (MWNumericArray)byteImageOutput[0];

 return numericImageByteArray.getByteData();

 }

 finally

 {

 MWArray.disposeArray(byteImageOutput);

 }

}

public BufferedImage getBufferedImageFromDeployedComponent()

{

 try

 {

7-4

 Work with MATLAB Figure and Image Data

 byte[] imageByteArray =

 getByteArrayFromDeployedComponent()

 return ImageIO.read

 (new ByteArrayInputStream(imageByteArray));

 }

 catch(IOException io_ex)

 {

 io_ex.printStackTrace();

 }

}

7-5

8

Creating Scalable Web Applications
Using RMI

• “Use Remote Method Invocation (RMI)” on page 8-2
• “RMI Prerequisites” on page 8-3
• “Run Client and Server on Same Machine” on page 8-4
• “Run Client and Server on Separate Machines” on page 8-7
• “Why Use Native Cell Arrays and Struct Arrays?” on page 8-8
• “Native Data Marshaling Prerequisites” on page 8-9
• “Use Native Java Cell and Struct Arrays” on page 8-10
• “Additional RMI Examples” on page 8-14

8 Creating Scalable Web Applications Using RMI

Use Remote Method Invocation (RMI)

You can expand your application's throughput capacity by taking advantage of RMI, the
Java native remote procedure call (RPC) mechanism. The way the MATLAB Compiler
SDK product implements RMI technology provides for automatic generation of interface
code to enable components to start in separate processes, on one or more computers,
making your applications scalable and adaptable to future performance demands.

You can use RMI in the following ways:

• Run a client and server on a single machine
• Run a client and server on separate machines

Tip: While running on UNIX, ensure you use : as the path separator in calls to java and
javac.

; is used as a path separator only on Windows.

8-2

 RMI Prerequisites

RMI Prerequisites

This section describes the prerequisites needed prior to using RMI.

Ensure You Have the Required Products

The following products must be installed at their recommended release levels.

• MATLAB, MATLAB Compiler, MATLAB Compiler SDK
• Java Development Kit (JDK)

Ensure you have a JDK installed on your system. You can download it from Oracle,
Inc.

Note: You should be using the same version of Java that ships with MATLAB. To
find out what version of Java MATLAB is running, enter the following MATLAB
command:

version -java

Caution: MathWorks only supports the Oracle JDK and JRE. A certain measure of
cross-version compatibility resides in the Oracle software and it may be possible to
run applications with compiled MATLAB functions with non-Oracle JDKs under some
circumstances—however, compatibility is not guaranteed.

Ensure Your Web Server Is Java Compliant

In order to run this example, your Web server must be capable of running accepted Java
frameworks like J2EE. Running the WebFigures example (“Implement a WebFigure” on
page 6-4) also requires the ability to run servlets in WARs (Web Archives).

Install the javabuilder.jar Library

Ensure that the javabuilder.jar library (matlabroot/toolbox/javabuilder/
jar/javabuilder.jar) has been installed into your Web server’s common library
folder.

8-3

http://www.oracle.com/us/technologies/java/overview/index.html
http://www.oracle.com/us/technologies/java/overview/index.html

8 Creating Scalable Web Applications Using RMI

Run Client and Server on Same Machine

The following example shows how to run two separate processes to initialize MATLAB
struct arrays.

Note: You do not need the MATLAB Runtime installed on the client side. Return values
from the MATLAB Runtime can be automatically converted using the marshalOutputs
Boolean in the RemoteProxy class. See the Javadoc API documentation for details at
matlabroot/help/toolbox/javabuilder/MWArrayAPI.

1 Compile the Java package by issuing the following command at the MATLAB
command prompt:

mcc -W 'java:dataTypesComp,dataTypesClass'

 createEmptyStruct.m

updateField.m -v

2 Compile the server Java code by issuing the following javac command.
Ensure there are no spaces between javabuilder.jar; and
directory_containing_pacakage.

javac -classpath

matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

directory_containing_pacakage\dataTypesComp.jar

DataTypesServer.java

You can find DataTypesServer.java in:

matlabroot\toolbox\javabuilder\Examples\RMIExamples

\DataTypes\DataTypesDemoJavaApp

3 Compile the client Java code by issuing the following javac command.
Ensure there are no spaces between javabuilder.jar; and
directory_containing_pacakage.

javac -classpath

matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

directory_containing_pacakage\dataTypesComp.jar DataTypesClient.java

4 Run the client and server as follows:

a Open two command windows.

8-4

 Run Client and Server on Same Machine

b If running Windows, ensure that matlabroot/runtime/arch is defined
on the system path. If running UNIX, ensure LD_LIBRARY_PATH and
DYLD_LIBRARY_PATH are set properly.

c Run the server by issuing the following java command. Ensure there are no
spaces between dataTypesComp.jar; and matlabroot.

 java -classpath

 .;directory_containing_pacakage\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar

-Djava.rmi.server.codebase=

 "file:///matlabroot/toolbox/javabuilder/jar/javabuilder.jar

 file:///directory_containing_pacakage/dataTypesComp.jar"

 DataTypesServer

d Run the client by issuing the following java command. Ensure there are no
spaces between dataTypesComp.jar; and matlabroot.

java -classpath

 .;directory_containing_pacakage\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar

 DataTypesClient

You can find DataTypesClient.java in: matlabroot\toolbox\javabuilder
\Examples\RMIExamples\DataTypes\DataTypesDemoJavaApp.

If successful, the following output appears in the Command Window running the
server:

Please wait for the server registration notification.

 Server registered and running successfully!!

 EVENT 1: Initializing the structure on server

 and sending it to client:

 Initialized empty structure:

 Name: []

 Address: []

 ##################################

 EVENT 3: Partially initialized structure as received by server:

 Name: []

 Address: [1x1 struct]

 Address field as initialized from the client:

 Street: '3, Apple Hill Drive'

8-5

8 Creating Scalable Web Applications Using RMI

 City: 'Natick'

 State: 'MA'

 Zip: '01760'

 ##################################

 EVENT 4: Updating 'Name' field before

 sending the structure back to the client:

 Name: 'The MathWorks'

 Address: [1x1 struct]

 ##################################

If successful, the following output appears in the Command Window running the
client:
 Running the client application!!

 EVENT 2: Initialized structure as received in client applications:

 Name: []

 Address: []

 Updating the 'Address' field to :

 Street: '3, Apple Hill Drive'

 City: 'Natick'

 State: 'MA'

 Zip: '01760'

 #################################

 EVENT 5: Final structure as received by client:

 Name: 'The MathWorks'

 Address: [1x1 struct]

 Address field:

 Street: '3, Apple Hill Drive'

 City: 'Natick'

 State: 'MA'

 Zip: '01760'

 #################################

8-6

 Run Client and Server on Separate Machines

Run Client and Server on Separate Machines

To implement RMI with a client on one machine and a server on another, you must:

1 Change how the server is bound to the system registry.
2 Redefine how the client accesses the server.

After this is done, follow the steps in “Run Client and Server on Same Machine” on
page 8-4.

8-7

8 Creating Scalable Web Applications Using RMI

Why Use Native Cell Arrays and Struct Arrays?

In Java, there is no direct representation available for MATLAB struct arrays and cell
arrays.

As a result, when an instance of MWStructArray or MWCellArray is converted to a Java
native type using the toArray() method, the output is a multi-dimensional Object
array which can be difficult to process.

When you use MATLAB Compiler SDK packages with RMI, however, you have
control over how the server sends the results of MATLAB function calls back to
the client. The server can be set to marshal the output to the client as an MWArray
(com.mathworks.toolbox.javabuilder package) sub-type or as a Java native data
type. The Java native data type representation of MWArray subtypes is obtained by
invoking the toArray() method by the server.

Using Java native representations of MATLAB struct and cell arrays is recommended if
both of these are true:

• You have MATLAB functions on a server with MATLAB struct or cell data types as
inputs or outputs

• You do not want or need to install MATLAB Runtime on your client machines

Using Native Types Does Not Require a Client-Side MATLAB Runtime

The classes in the com.mathworks.extern.java package (in javabuilder.jar)
do not need a MATLAB Runtime. The names of the classes in this package are the
same as those in com.mathworks.toolbox.javabuilder — allowing the end-user
to easily create instances of com.mathworks.extern.java.MWStructArray or
com.mathworks.extern.java.MWCellArray that work the same as the like-named
classes in com.mathworks.toolbox.javabuilder — on a machine that does not have
a MATLAB Runtime.

The availability of a MATLAB Runtime on the client machine dictates how the server
should be set for marshaling MATLAB functions, since the MWArray class hierarchy
can be used only with a MATLAB Runtime. If the client machine does not have a
MATLAB Runtime available, the server returns the output of toArray() for cell or
struct arrays as instances of com.mathworks.extern.java.MWStructArray or
com.mathworks.extern.java.MWCellArray.

8-8

 Native Data Marshaling Prerequisites

Native Data Marshaling Prerequisites

Even though client machines don’t need to have a MATLAB Runtime, they do need to
have javabuilder.jar since it contains the com.mathworks.extern.java package.

Please refer to the Javadoc (matlabroot/help/toolbox/javabuilder/MWArrayAPI)
for more information about classes in all MATLAB Compiler SDK Java packages.

8-9

8 Creating Scalable Web Applications Using RMI

Use Native Java Cell and Struct Arrays

Before You Run the Example

Before you run this example, note the following:

• This example demonstrates how to implement RMI when the client and the server are
running on the same machine. See “Run Client and Server on Separate Machines” on
page 8-7 if you would like to do otherwise.

• On UNIX, use : as the path separator in calls to java and javac. Use ; as a path
separator on Windows.

• Only update the server system path with the location of the MATLAB Runtime. The
client does not need access to the MATLAB Runtime.

• This example is shipped in the matlab\toolbox\javabuilder\Examples
\RMIExamples\NativeCellStruct directory.

• Ensure that:

• On Windows systems, matlabroot/runtime/arch is on the system path.
• On UNIX systems, LD_LIBRARY_PATH and DYLD_LIBRARY_PATH are set properly.

See “MATLAB Runtime Path Settings for Run-Time Deployment” on page 4-4 for
further information on setting the path.

Running the Example

Note: Be sure to enter the following as single, unbroken commands.

1 Use the following mcc command to build the package:

 mcc -W 'java:dataTypesComp,dataTypesClass' createEmptyStruct.m

 updateField.m -v

2 Compile the server's Java code:

javac -classpath matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

directory_containing_pacakage\dataTypesComp.jar NativeCellStructServer.java

3 Compile the client's Java code:

javac -classpath matlabroot\toolbox\javabuilder\jar\javabuilder.jar;

8-10

 Use Native Java Cell and Struct Arrays

directory_containing_pacakage\dataTypesComp.jar

NativeCellStructClient.java

4 Prepare to run the server and client applications by opening two command windows
—one for client and one for server.

5 Run the server:

java -classpath .;directory_containing_pacakage\dataTypesComp.jar;

 matlabroot\toolbox\javabuilder\jar\javabuilder.jar

-Djava.rmi.server.codebase="file:///matlabroot/toolbox/javabuilder/

jar/javabuilder.jar file:///

directory_containing_pacakage/dataTypesComp.jar"

NativeCellStructServer

6 Run the client:

java -classpath .;directory_containing_pacakage\dataTypesComp.jar;

matlabroot\toolbox\javabuilder\jar\javabuilder.jar NativeCellStructClient

7 If your application has run successfully, the output will display as follows:

• Server output:

 Please wait for the server registration notification.

 Server registered and running successfully!!

 EVENT 1: Initializing the structure on server and

 sending it to client:

 Initialized empty structure:

 Name: ' '

 Address: []

 ##################################

 EVENT 3: Partially initialized structure as received

 by server:

 Name: ' '

 Address: [1x1 struct]

 Address field as initialized from the client:

 Street: '3, Apple Hill Drive'

 City: 'Natick'

8-11

8 Creating Scalable Web Applications Using RMI

 State: 'MA'

 Zip: '01760'

 ##################################

 EVENT 4: Updating 'Name' field before sending the

 structure back to the client

 Name: 'The MathWorks'

 Address: [1x1 struct]

 ##################################

• Client output:

Running the client application!!

 EVENT 2: Initialized structure as received in client

 applications:

 1x1 struct array with fields:

 Name

 Address

 Updating the 'Address' field to :

 1x1 struct array with fields:

 Street

 City

 State

 Zip

 #################################

 EVENT 5: Final structure as received by client:

 1x1 struct array with fields:

 Name

 Address

8-12

 Use Native Java Cell and Struct Arrays

 Address field:

 1x1 struct array with fields:

 Street

 City

 State

 Zip

 #################################

8-13

8 Creating Scalable Web Applications Using RMI

Additional RMI Examples

For more examples of RMI implementation, see the examples in matlabroot/toolbox/
javabuilder/Examples/RMIExamples.

8-14

9

Troubleshooting

9 Troubleshooting

Common MATLAB Compiler SDK Error Messages

Exception in thread "main" java.lang.UnsatisfiedLinkError: Failed to find the library
mclmcrrt712.dll, required by MATLAB Compiler SDK, on java.library.path

Install the MATLAB Runtime or add it to the MATLAB path.

Failed to find the library <library_name>, required by MATLAB Compiler SDK, on
java.library.path.

This error commonly occurs on Linux or Mac systems if the LD_LIBRARY_PATH variable
is not set.

See “MATLAB Runtime Path Settings for Development and Testing” on page 4-2 and
“MATLAB Runtime Path Settings for Run-Time Deployment” on page 4-4.

javac is not recognized as an internal or external command, operable program or batch file.

This is a common error when the javac executable (javac.exe), installed with Java, is
not on your system PATH.

Edit your system environment variables and add your Java installation folder to the
PATH variable.

9-2

10

Reference Information for Java

• “Requirements for the MATLAB Compiler SDK Java Target” on page 10-2
• “Rules for Data Conversion Between Java and MATLAB” on page 10-4
• “Programming Interfaces Generated MATLAB Compiler SDK” on page 10-8
• “Share MATLAB Runtime Instances” on page 10-12
• “MWArray Class Specification” on page 10-13

10 Reference Information for Java

Requirements for the MATLAB Compiler SDK Java Target

In this section...

“System Requirements” on page 10-2
“Path Modifications Required for Accessibility” on page 10-2
“Limitations of the MATLAB Compiler SDK Java Target” on page 10-3

System Requirements

System requirements and restrictions on use of the MATLAB Compiler SDK Java target
are as follows:

• The MATLAB Compiler product must be installed.
• Java Development Kit must be installed.
• Java Runtime Environment that is used by MATLAB and MATLAB Runtime

Note: You should be using the same version of Java that ships with MATLAB. To
find out what version of Java MATLAB is running, enter the following MATLAB
command:

version -java

Caution: MathWorks only supports the Oracle JDK and JRE. A certain measure of
cross-version compatibility resides in the Oracle software and it may be possible to
run applications with compiled MATLAB functions with non-Oracle JDKs under some
circumstances—however, compatibility is not guaranteed.

Path Modifications Required for Accessibility

In order to use some screen-readers or assistive technologies, such as JAWS, you must
add the following DLLs to your Windows path:

matlabroot\sys\java\jre\arch\jre\bin\JavaAccessBridge.dll

matlabroot\sys\java\jre\arch\jre\bin\WindowsAccessBridge.dll

10-2

 Requirements for the MATLAB Compiler SDK Java Target

You may not be able to use such technologies without doing so.

Limitations of the MATLAB Compiler SDK Java Target

MATLAB Java External Interface

JAR files created by MATLAB Compiler SDK cannot be loaded back into MATLAB with
the MATLAB Java External Interface.

MATLAB Objects

The MATLAB Compiler SDK product's Java target does not support MATLAB object
data types. MATLAB objects can not "pass" the MATLAB/Java boundary. However, you
are free to use objects in your MATLAB code.

10-3

10 Reference Information for Java

Rules for Data Conversion Between Java and MATLAB
In this section...

“Java to MATLAB Conversion” on page 10-4
“MATLAB to Java Conversion” on page 10-5
“Unsupported MATLAB Array Types” on page 10-7

Java to MATLAB Conversion

The following table lists the data conversion rules for converting Java data types to
MATLAB types.

Note: The conversion rules apply to scalars, vectors, matrices, and multidimensional
arrays of the types listed.

The conversion rules apply not only when calling your own methods, but also when
calling constructors and factory methods belonging to the MWArray classes.

When calling an MWArray class method constructor, supplying a specific data type causes
the compiler to convert to that type instead of the default.

Java to MATLAB Conversion Rules

Java Type MATLAB Type

double double

float single

byte int8

int int32

short int16

long int64

char char

boolean logical

java.lang.Double double

java.lang.Float single

10-4

 Rules for Data Conversion Between Java and MATLAB

Java Type MATLAB Type

java.lang.Byte int8

java.lang.Integer int32

java.lang.Long int64

java.lang.Short int16

java.lang.Number double

Note: Subclasses of java.lang.Number not listed above are
converted to double.

java.lang.Boolean logical

java.lang.Character char

java.lang.String char

Note: A Java string is converted to a 1-by-N array of char with N
equal to the length of the input string.

An array of Java strings (String[]) is converted to an M-by-N
array of char, with M equal to the number of elements in the input
array and N equal to the maximum length of any of the strings in
the array.

Higher dimensional arrays of String are converted similarly.

In general, an N-dimensional array of String is converted to an
N+1 dimensional array of char with appropriate zero padding
where supplied strings have different lengths.

MATLAB to Java Conversion

The following table lists the data conversion rules for converting MATLAB data types to
Java types.

Note: The conversion rules apply to scalars, vectors, matrices, and multidimensional
arrays of the types listed.

10-5

10 Reference Information for Java

MATLAB to Java Conversion Rules

MATLAB Type Java Type (Primitive) Java Type (Object)

cell Not applicable Object

Note: Cell arrays are constructed and
accessed as arrays of MWArray.

structure Not applicable Object

Note: Structure arrays are constructed and
accessed as arrays of MWArray.

char char java.lang.Character

double double java.lang.Double

single float java.lang.Float

int8 byte java.lang.Byte

int16 short java.lang.Short

int32 int java.lang.Integer

int64 long java.lang.Long

uint8 byte java.lang.Byte

Java has no unsigned type to represent the
uint8 used in MATLAB. Construction of and
access to MATLAB arrays of an unsigned
type requires conversion.

uint16 short java.lang.short

Java has no unsigned type to represent the
uint16 used in MATLAB. Construction of
and access to MATLAB arrays of an unsigned
type requires conversion.

uint32 int java.lang.Integer

Java has no unsigned type to represent the
uint32 used in MATLAB. Construction of

10-6

 Rules for Data Conversion Between Java and MATLAB

MATLAB Type Java Type (Primitive) Java Type (Object)

and access to MATLAB arrays of an unsigned
type requires conversion.

uint64 long java.lang.Long

Java has no unsigned type to represent the
uint64 used in MATLAB. Construction of
and access to MATLAB arrays of an unsigned
type requires conversion.

logical boolean java.lang.Boolean

Function handle Not supported
Java class Not supported
User class Not supported

Unsupported MATLAB Array Types

Java has no unsigned types to represent the uint8, uint16, uint32, and uint64 types
used in MATLAB. Construction of and access to MATLAB arrays of an unsigned type
requires conversion.

10-7

10 Reference Information for Java

Programming Interfaces Generated MATLAB Compiler SDK

In this section...

“APIs Based on MATLAB Function Signatures” on page 10-8
“Standard API” on page 10-9
“mlx API” on page 10-10
“Code Fragment: Signatures Generated for the myprimes Example” on page 10-10

APIs Based on MATLAB Function Signatures

The compiler generates two kinds of interfaces to handle MATLAB function signatures.

• A standard signature in Java

This interface specifies input arguments for each overloaded method as one or more
input arguments of class java.lang.Object or any subclass (including subclasses
of MWArray). The standard interface specifies return values, if any, as a subclass of
MWArray.

• mlx API

This interface allows the user to specify the inputs to a function as an Object array,
where each array element is one input argument. Similarly, the user also gives
the mlx interface a preallocated Object array to hold the outputs of the function.
The allocated length of the output array determines the number of desired function
outputs.

The mlx interface may also be accessed using java.util.List containers in place
of Object arrays for the inputs and outputs. Note that if List containers are used, the
output List passed in must contain a number of elements equal to the desired number
of function outputs.

For example, this would be incorrect usage:

java.util.List outputs = new ArrayList(3);

myclass.myfunction(outputs, inputs); // outputs 0 elements!

And this would be the correct usage:

java.util.List outputs = Arrays.asList(new Object[3]);

10-8

 Programming Interfaces Generated MATLAB Compiler SDK

myclass.myfunction(outputs, inputs); // list has 3 elements

Typically you use the standard interface when you want to call MATLAB functions that
return a single array. In other cases you probably need to use the mlx interface.

Standard API

The standard calling interface returns an array of one or more MWArray objects.

The standard API for a generic function with none, one, more than one, or a variable
number of arguments, is shown in the following table.

Arguments API to Use

Generic MATLAB function function [Out1, Out2, ..., varargout] = foo(In1, In2, ...,

 InN, varargin)

API if there are no input
arguments

public Object[] foo(int numArgsOut)

API if there is one input
argument

public Object[] foo(int numArgsOut, Object In1)

API if there are two to N input
arguments

public Object[] foo(

int numArgsOut,

Object In1,

Object In2,

... Object InN

)

API if there are optional
arguments, represented by the
varargin argument

public Object[] foo(

int numArgsOut,

 Object in1,

 Object in2,

 ..., Object InN,

Object varargin

)

Details about the arguments for these samples of standard signatures are shown in the
following table.

Argument Description Details About Argument

numArgsOut Number of outputs An integer indicating the number of outputs
you want the method to return. To return no
arguments, omit this argument.

10-9

10 Reference Information for Java

Argument Description Details About Argument

The value of numArgsOut must be less than or
equal to the MATLAB function nargout.

The numArgsOut argument must always be
the first argument in the list.

In1,

In2, ...InN

Required input
arguments

All arguments that follow numArgsOut in the
argument list are inputs to the method being
called.

Specify all required inputs first. Each required
input must be of class MWArray or any class
derived from MWArray.

varargin Optional inputs You can also specify optional inputs if your
MATLAB code uses the varargin input:
list the optional inputs, or put them in an
Object[] argument, placing the array last in
the argument list.

Out1,

Out2, ...OutN

Output arguments With the standard calling interface, all
output arguments are returned as an array of
MWArrays.

mlx API

For a function with the following structure:

function [Out1, Out2, ..., varargout] = foo(In1, In2, ...,

 InN, varargin)

The compiler generates the following API, as the mlx interface:

public void foo (List outputs, List inputs) throws MWException;

public void foo (Object[] outputs, Object[] inputs)

 throws MWException;

Code Fragment: Signatures Generated for the myprimes Example

For a specific example, look at the myprimes method. This method has one input
argument, so the compiler generates three overloaded methods in Java.

10-10

 Programming Interfaces Generated MATLAB Compiler SDK

When you add myprimes to the class myclass and build the class, the compiler
generates the myclass.java file. A fragment of myclass.java is listed to show
overloaded implementations of the myprimes method in the Java code.

The standard interface specifies inputs to the function within the argument list and
outputs as return values. The second implementation demonstrates the feval interface,
the third implementation shows the interface to be used if there are no input arguments,
and the fourth shows the implementation to be used if there is one input argument.
Rather than returning function outputs as a return value, the feval interface includes
both input and output arguments in the argument list. Output arguments are specified
first, followed by input arguments.

/* mlx interface – List version */

public void myprimes(List lhs, List rhs) throws MWException

{

 (implementation omitted)

}

/* mlx interface – Array version */

public void myprimes(Object[] lhs, Object[] rhs)

 throws MWException

{

 (implementation omitted)

 }

/* Standard interface – no inputs*/

public Object[] myprimes(int nargout) throws MWException

 {

 (implementation omitted)

 }

/* Standard interface – one input*/

public Object[] myprimes(int nargout, Object n)

 throws MWException

 {

 (implementation omitted)

 }

See “APIs Based on MATLAB Function Signatures” on page 10-8 for details about
the interfaces.

10-11

10 Reference Information for Java

Share MATLAB Runtime Instances

In this section...

“What Is a Singleton MATLAB Runtime?” on page 10-12
“Advantages and Disadvantages of Using a Singleton” on page 10-12

What Is a Singleton MATLAB Runtime?

You create an instance of the MATLAB Runtime that can be shared among all
subsequent class instances within a component. This is commonly called a shared
MATLAB Runtime instance or a Singleton runtime.

Advantages and Disadvantages of Using a Singleton

In most cases, a singleton MATLAB Runtime will provide many more advantages than
disadvantages. Following are examples of when you might and might not create a shared
MATLAB Runtime instance.

When You Should Use a Singleton

If you have multiple users running from a specific instance of MATLAB, using a
singleton will most likely:

• Utilize system memory more efficiently
• Decrease MATLAB Runtime start-up or initialization time

When You Might Avoid Using a Singleton

Using a singleton may not benefit you if your application uses a large number of global
variables. This causes crosstalk.

10-12

 MWArray Class Specification

MWArray Class Specification

For complete reference information about the MWArray class hierarchy, see
com.mathworks.toolbox.javabuilder.MWArray, which is in the matlabroot/
help/toolbox/javabuilder/MWArrayAPI/ folder.

Note: For matlabroot, substitute the MATLAB root folder on your system. Type
matlabroot to see this folder name.

10-13

11

Functions — Alphabetical List

11 Functions — Alphabetical List

mcrinstaller
Display version and location information for MATLAB Runtime installer corresponding
to current platform

Syntax
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM, LIST] = mcrinstaller;

Description
Displays information about available MATLAB Runtime installers using the format:
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM, LIST] = mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current platform.
• MAJOR is the major version number of the installer.
• MINOR is the minor version number of the installer.
• PLATFORM is the name of the current platform (returned by COMPUTER(arch)).
• LIST is a cell array of character vectors containing the full paths to MATLAB

Runtime installers for other platforms. This list is non-empty only in a multi-platform
MATLAB installation.

Note: You must distribute the MATLAB Runtime library to your end users to enable
them to run applications developed with MATLAB Compiler or MATLAB Compiler SDK.

See “Install and Configure the MATLAB Runtime”for more information about the
MATLAB Runtime installer.

Examples

Find MATLAB Runtime Installer Locations

Display locations of MATLAB Runtime installers for platform. This example shows
output for a win64 system.

11-2

 mcrinstaller

mcrinstaller

The WIN64 MATLAB Runtime Installer, version 9.0.1, is:

 C:\Program Files\MATLAB\R2016a\toolbox\compiler\deploy\win64\MCRInstaller.exe

MATLAB Runtime installers for other platforms are located in:

 C:\Program Files\MATLAB\R2016a\toolbox\compiler\deploy\<ARCH>

 <ARCH> is the value of COMPUTER('arch') on the target machine.

Full list of available MATLAB Runtime installers:

 C:\Program Files\MATLAB\R2016a\toolbox\compiler\deploy\win64\MCRInstaller.exe

For more information, read your local MATLAB Runtime Installer Help.

Or see the online documentation at MathWorks' web site. (Page

 may load slowly.)

ans =

C:\Program Files\MATLAB\R2016a\toolbox\compiler\deploy\win64\MCRInstaller.exe

Introduced in R2009a

11-3

11 Functions — Alphabetical List

mcrversion
Determine version of installed MATLAB Runtime

Syntax

[major, minor] = mcrversion;

Description

The MATLAB Runtime version number consists of two digits, separated by a decimal
point. This function returns each digit as a separate output variable: [major, minor]
= mcrversion; Major and minor are returned as integers.

If the version number ever increases to three or more digits, call mcrversion with more
outputs, as follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples
mcrversion

ans =

 7

Introduced in R2008a

11-4

 waitForFigures

waitForFigures
Block execution of a calling program as long as figures created in encapsulated MATLAB
code are displayed

Syntax
objName.waitForFigures();

Description

waitForFigures() blocks execution of a calling program as long as figures created in
encapsulated MATLAB code are displayed. Typically you use waitForFigures when:

• There are one or more figures open that were created by a Java class created by the
MATLAB Compiler SDK product.

• The method that displays the graphics requires user input before continuing.
• The method that calls the figures was called from main() in a console program.

When waitForFigures is called, execution of the calling program is blocked if any
figures created by the calling object remain open.

Caution: Use care when calling the waitForFigures method. Calling this method from
an interactive program like Microsoft® Excel® can hang the application. Call this method
only from console-based programs.

See Also

Topics
“Execution of Applications that Create Figures” on page 2-57

Introduced before R2006a

11-5

